Quick question, index notation, alternating tensor.

binbagsss
Messages
1,291
Reaction score
12
Q) I am using index notation to show that ε^{0123}=-1 given that ε_{0123}=1.

The soluton is:

ε^{0123}=g^{00}g^{11}g^{22}g^{33}ε_{0123}=-ε_{0123}

where g_{\alpha\beta} is the metric tensor.

I am struggling to understand the last equality.

Many thanks for any assistance.
 
Physics news on Phys.org
binbagsss said:
Q) I am using index notation to show that ε^{0123}=-1 given that ε_{0123}=1.

The soluton is:

ε^{0123}=g^{00}g^{11}g^{22}g^{33}ε_{0123}=-ε_{0123}

where g_{\alpha\beta} is the metric tensor.

I am struggling to understand the last equality.

Many thanks for any assistance.

Look up the definition of the metric tensor you are using and insert the values of the g components.
 
If you are using the standard metric tensor for relativity then g^{11}= g^{22}= g{33}= -1 while g^{00}= 1.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top