Maxwell's equations from divergence of stress-energy tensor?

bcrowell
Staff Emeritus
Science Advisor
Insights Author
Messages
6,723
Reaction score
431
If I start with the stress-energy tensor T^{\mu\nu} of the electromagnetic field and then apply energy-momentum conservation \partial_\mu T^{\mu\nu}=0, I get a whole bunch of messy stuff, but, e.g., with \nu=x part of it looks like -E_x \nabla\cdot E, which would vanish according to Maxwell's equations in a vacuum.

Is it true that you recover the complete vacuum version of Maxwell's equations by doing this? If so, is there any way to extend this to include the source terms?
 
Physics news on Phys.org
##\nabla_{a}T^{ab} = -\frac{3}{2}F_{ac}\nabla^{[a}F^{bc]} + F_{c}{}{}^{b}\nabla_{a}F^{ac} =0##. From here you would have to somehow show that ##\nabla^{[a}F^{bc]} = 0## and ##\nabla_{a}F^{ac} =0##. I don't immediately see a way to do that; even if you can show that the two surviving terms in ##\nabla_a T^{ab} = 0## are independent of each other, you'd still be left with ##F_{ac}\nabla^{[a}F^{bc]} = 0## and ## F_{c}{}{}^{b}\nabla_{a}F^{ac} =0##.
 
If I am understanding MTW section 20.6 correctly, they say that Maxwell's equations can be derived from the Einstein field equation (G=T), which should be covariant conservation of energy, and the form of the stress-energy tensor.

But Exercise 20.8 is "The Maxwell equations cannot be derived from conservation of stress energy when (E.B) = 0 over an extended region".
 
Last edited:
  • Like
Likes 1 person
atyy said:
If I am understanding MTW section 20.6 correctly, they say that Maxwell's equations can be derived from the Einstein field equation (G=T), which should be covariant conservation of energy, and the form of the stress-energy tensor.

Awesome find bud! They proceed directly from what I wrote down above to first show that ##\nabla^{[a}F^{bc]} = 0##, which leaves ##F_{c}{}{}^{b}\nabla_a F^{ac} = 0## and they then argue that this can only vanish if ##\nabla_a F^{ac} = 0## by using invariants of the electromagnetic field. Their calculation is quite elegant.
 
Excellent -- thanks, atyy and WannabeNewton!
 
As for the source terms, usually one uses Maxwell's equations and the Maxwell stress-energy tensor to show that ##\nabla_a T^{ab} = j_{a}F^{ab}## but if you take this relation for granted and work backwards then you'd get ##F_{c}{}{}^{b}\nabla_{a}F^{ac} = j^{c}F_{c}{}{}^{b}##; since this must hold for arbitrary electromagnetic fields you can easily conclude that ##\nabla_a F^{ac} = j^c##. The only thing is that you can't use Maxwell's equations to prove that ##\nabla_a T^{ab} = j_{a}F^{ab}## like one normally does so if you want to work backwards you'd have to argue that ##\nabla_a T^{ab} = j_{a}F^{ab}## is true.

EDIT: and it's easy to argue this so as long as you assume that the total energy-momentum of the combined electromagnetic field + interacting charged fluid system is still conserved. Because if we have a charged fluid with some stress-energy tensor ##T_{\text{mat}}^{ab}## then we have ##\nabla_a T_{\text{mat}}^{ab} = \mathcal{F}^b##, where ##\mathcal{F}^b## is the 4-force density on the charged fluid. Since the charged fluid is interacting with the electromagnetic field, the 4-force density comes directly from the Lorentz 4-force, whose density is simply ##\mathcal{F}^b = -j_{a}F^{ab}##. So if the total energy-momentum is conserved then we will have ##\nabla_a T^{ab}_{\text{em}} = j_a F^{ab}##.
 
Last edited:
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top