Deriving the Center of Mass of a Cone with Point Facing Downwards

AI Thread Summary
To find the center of mass of a cone with its point facing downwards, the discussion focuses on using calculus to derive the center of mass formula. The cone is treated as a stack of disks, where the radius of each disk varies linearly with height. The volume of each disk is expressed as Dv = π[(r/H)x]^2 dx, leading to the integration of x from 0 to H. The calculations yield the center of mass at 3/4 H, confirming the conventional result of H/4 for the center of mass location. The integration approach emphasizes the importance of understanding the geometry and volume of the cone's structure.
dowjonez
Messages
21
Reaction score
0
I need to find the center of mass of a cone with point facing downwards, of height H and radius R.

Since the density is constant throughout and because of axial symmetry the center must be somewhere on the z-axis.

I know from convention that this is H/4 but i need to derive this.


Rcm = (intregral from 0 to H) of the change in radius

this is where I am stumped
i did really bad in calculus

could anyone help me?
 
Physics news on Phys.org
Hint: Consider the cone as a stack of disks.
 
Let Dv Be An Element In The Form Of A Disk That Cuts Through The Cone.

The Radius Of The Disk Is (r / H) X.

The Volume Equals The Area Of The Disk Times The Thickness.

Dv = Pi[(r / H ) X] ^2
Now Intergate From 0 To H

X' = Int (x Dv) / Int Dv = 3/4 H
 
okay so the biggest such disk would have volume pi*R^2*h

what is the volume of the disk under that?
 
the biggest *THIN* disk, at x = H, has radius r = xR/H,
so its Volume = dV = pi R^2 dx.

You need to integrate x from 0 to H .
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top