Finding the Second Derivative of a Cubic Function

  • Thread starter Thread starter gr3g1
  • Start date Start date
  • Tags Tags
    Derivative
gr3g1
Messages
71
Reaction score
0
Hey guys,

My function is : y=(1-x^2)^3
I found my first derivative as : -6x(1-x^2)^2
But i can't seem to find the second derivative.

Do I use the product rule?
 
Physics news on Phys.org
You are right use the product rule
<br /> f(x)=u(x)v(x)<br />
then
<br /> f&#039;(x) = u&#039;(x)v(x) + v&#039;(x)u(x)<br />
here u(x)=-6x and v(x)=(1-x^2)^2
 
Last edited:
Thanks A lot
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top