Proving Equal Roots in ar^2+br+c=0 with L[e^(rt)]

  • Thread starter Thread starter asdf1
  • Start date Start date
  • Tags Tags
    Roots
asdf1
Messages
734
Reaction score
0
If ar^2+br+c=0 has equal roots r1, show that
L[e^(rt)]=a(e^(rt))``+b(e^(rt))`+ ce^(rt)=a{(r-r1)^2}e^(rt)

could someone offer some advice?
 
Physics news on Phys.org
asdf1 said:
If ar^2+br+c=0 has equal roots r1, show that
L[e^(rt)]=a(e^(rt))``+b(e^(rt))`+ ce^(rt)=a{(r-r1)^2}e^(rt)
could someone offer some advice?
The only advice I can give is that you go ahead and do what is shown on the left hand side!
Surely, you know what the first and second derivatives of ert are!
And, of course, If r1 is a double root of ar2+ br+ c= 0, then ar2+ br+ c= a(r- r1[/sup])(r-r2).
 
Last edited by a moderator:
ok ~ thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top