Heat equation Definition and 257 Threads

  1. A

    3d heat equation with constant point source

    Hi all, I'd like to solve the following problem in 3 dimensions: \partial_t u(r,t) = D\Delta u(r,t) u(r,0) = 0 u(0,t) = C_o In words, I am looking at a point 'source' that is turned on at t=0 and held at constant temperature. The ultimate goal is to then convolve this solution with...
  2. C

    What is the Best Approximation for Heat Transfer in Two-Dimensional Systems?

    Hi there. At first I tought of posting this thread on the homework category, but this is a conceptual doubt rather than anything else. While revisiting Heat Transfer I stumbled upon a simple problem, that yet got me thinking. It is as follows: Before anything else, let me show...
  3. D

    Resources for Solving Heat Equation

    Hey guys, I am just looking for some online resources for solving the heat equation. So far I have looked at Paul's Online Math Notes: http://tutorial.math.lamar.edu/Classes/DE/SolvingHeatEquation.aspx But I don't feel very confident with the material yet. I would really like some more...
  4. P

    How Do You Solve the 1D Heat Equation with Trigonometric Initial Conditions?

    problem u_t=u_xx, x is in [0,1], t>0 with u(0,t)=u(1,t)=0, t>0 u(x,0)=sin(pi*x)-sin(3*pi*x), x is in (0,1) i think its solution is of the form u(x,t)=sigma(n=1 to infinity){a_n*sin(n*pi*x)*exp(-n^2*pi^2*t) where a_n=2*integral(0 to 1){ (sin(pi*x)-sin(3*pi*x)) * sin(n*pi*x) }...
  5. B

    Heat Equation with cylindrical rod

    Hello, I am looking to apply to heat equation to a cylindrical rod and solving with explicit finite difference scheme. I have never worked with cylindrical coordinates before, what would be the best way to model this? I am having a hard time understanding the advantage of using cylindrical...
  6. I

    How Do You Solve the Steady Temperature Distribution for a Semi-Infinite Plate?

    Homework Statement A flat plate lies in the region: 0<x<35, 0<y<inf The temperature is steady (not changing with time), and the boundary conditions are: T = { x if 0<x<35; y=0 70-x if 35<x<70; y=0 0 if x=0 0 if x=70 } Enter the temperature at (x = 42, y = 21) Homework...
  7. M

    Solving Fourier Heat Equation: Analytical Solutions

    Can anyone tell me if there exist analytical solution to the Fourier heat equation rhoCdt/dt= ∇.(k∇T) + S Thanks
  8. G

    Applying boundary condition on heat equation

    Homework Statement hey, i have a heat equation question which asks to solve for u(x,t) given that u(0,t)=Q_0 + ΔQsin(ωt).Homework Equations d_xx u = k d_t u u(0,t)=Q_0 + ΔQsin(ωt) The Attempt at a Solution so you can solve the equation pretty easily with separation of variables, i.e...
  9. S

    Radiative/Convective Boundary Conditions for Heat Equation

    Hi everyone, I'm attempting to create a computer program to solve the transient 3d heat equation using the Crank Nicolson method. I would like to model the boundaries of my domain as losing heat via convection and radiation due to the temperature difference between the boundary and the air in...
  10. M

    How can I solve the heat equation with fixed and varying temperatures?

    I've been teaching myself some thermodynamics, and I've been thinking about solving the heat equation. \frac{\partial T}{\partial t} = K\frac{\partial ^2 T}{\partial x^2} I haven't taken a course in PDEs. I have noticed that if I assume an exponential solution, there are not non-decaying...
  11. O

    Backward euler method for heat equation with neumann b.c.

    I am trying to solve the following pde numerically using backward f.d. for time and central di fference approximation for x, in MATLAB but i can't get correct results. \frac{\partial u}{\partial t}=\alpha\frac{\partial^{2}u}{\partial x^{2}},\qquad u(x,0)=f(x),\qquad u_{x}(0,t)=0,\qquad...
  12. M

    MATLAB Solving Heat Equation in Cylindrical Coordinates with MATLAB's pdepe

    hello i am solving heat equation in cylindrical coordinator. i am using MATLAB "pdepe" solver to solve the partial differential equation. can anyone suggest me how to choose the initial condition?
  13. E

    Heat Equation in cylindrical coordinates

    Large, cylindrical bales of hay used to feed livestock in the winter months are D = 2 m in diameter and are stored end-to-end in long rows. Microbial energy generation occurs in the hay and can be excessive if the farmer bales the hay in a too-wet condition. Assuming the thermal conductivity of...
  14. J

    Solving heat equation for heat-pulse in a point on the surface

    Hi everybody, I'm trying to find a solution for the 3D heat equation for pulsed surface heating of a semi-infinte solid with insulated surface. I know the method of reflection is required, and that a point source in an infinite solid gives the following solution: U(x,y,z,t)=...
  15. M

    Understanding the Heat Equation and its Practical Applications

    given the heat equation \frac{\partial u}{\partial x}=\frac{\partial^2 u}{\partial x^2} what does \frac{\partial^2 u}{\partial x^2} represent on a practical, physical level? I am confused because this is not time-space acceleration, but rather a temperature-spacial derivative. thanks all!
  16. stripes

    What Linear Transformations Satisfy the 2D Heat Equation?

    Homework Statement For the heat equation in two space variables find all the linear transformations of the form (x,y) = a(x',y') for real number a such that \frac{\partial u}{\partial t} = \frac{k}{\sigma}\Delta u \Leftrightarrow \frac{\partial v}{\partial t} = \Delta'v where u(x,y,t) =...
  17. S

    MHB Solving the 1D Heat Equation with Separations of Variables

    Have been trying for hours but simply no results. Hope that someone can help me out. \[\frac{\partial u}{\partial t}=4\frac{\partial^2 u}{\partial x^2}\] for \(t>0\) and \(0\leq x\leq 2\) subject to the boundary conditions \[u_x (0,t) = 0\mbox{ and }u(2,t) = 0\] and the initial condition...
  18. fluidistic

    Steady state heat equation in a cylinder

    Homework Statement I'm unable to solve a problem of heat equation in a cylinder in steady state. The problem is a cylinder of radius a and a height L. The boundary condition are ##T(\rho , \theta , 0)=\alpha \sin \theta##, ##T(\rho, \theta , L)=0## and ##\frac{\partial T}{\partial \rho} (a...
  19. fluidistic

    Heat equation with Laplace transform

    Homework Statement Problem 8-19 in Matthews and Walker's book on mathematical physics. A straight wire of radius a is immersed in an infinite volume of liquid. Initially the wire and the liquid have temperature T=0. At time t=0, the wire is suddenly raised to temperature ##T_0## and...
  20. D

    Heat equation and Wave equation problems

    1. Solve the Heat equation u_t = ku_xx for 0 < x < ∏, t > 0 with the initial condition u(x, 0) = 1 + 2sinx and the boundary conditions u(0, t) = u(∏, t) = 1 (Notice that the boundary condition is not homogeneous) 3. Find the solution of the Wave equation u_tt = 4 u_xx with u(0...
  21. M

    Heat Equation with moving source

    Hello there, I want to solve the heat PDE in a 1D domain for a source moving at constant speed. The problem has been solved already, the solution being stationary in a reference frame moving with the source. This is highly un-intuitive, and I suppose the result originate from the fact the...
  22. L

    How does the heat equation change in the real world?

    The heat equation predicts that heat spreads infinitely far over arbitrarily small time intervals. What happens in real life? How does the heat equation get modified?
  23. V

    Solving the Heat Equation with R Code

    Hi! I have some trouble understanding this question. Could someone help me with it? Thanks! Solve the following with the explicit method from t=0 to t=0.5 with h=1/10 and with μ(=k/h2)=0.5 ut = uxx, -1 ≤ x ≤ 1, t>0 u(0,x) = cos(x), -1 ≤ x ≤ 1 u(t,-1) = u(t,1) = e-tcos1, t>0 Compute...
  24. F

    Help with heat equation dirac delta function?

    Homework Statement The question was way too long so i took a snap shot of it http://sphotos-h.ak.fbcdn.net/hphotos-ak-snc7/397320_358155177605479_1440801198_n.jpg Homework Equations The equations are all included in the snapshotThe Attempt at a Solution So for question A I've done what the...
  25. D

    Finding Solution of Inhomogeneous Heat Equation

    Homework Statement Show that if u(x,t) and v(x,t) are solutions to the Dirichlet problems for the Heat equation u_t (x,t) - ku_xx (x,t) = f(x,t), u(x,0) = Φ₁(x), u(0,t) = u(1,t) = g₁(t) v_t (x,t) - kv_xx (x,t) = f(x,t), v(x,0) = Φ₂(x), v(0,t) = v(1,t) = g₂(t) and if Φ₂(x) ≤ Φ₁(x)...
  26. D

    MHB Solving the Heat Equation with Initial Conditions

    I have already solved the main portions. I have $$ T(x,t) = \sum_{n = 1}^{\infty}A_n\cos\lambda_n x\exp(-\lambda_n^2t) $$ The eigenvalues are determined by $$ \tan\lambda_n = \frac{1}{\lambda_n} $$ The initial condition is $T(x,0) =1$. For the particular case of $f(x) = 1$, numerically...
  27. D

    MHB Solving the Heat Equation with B.C. and I.C.

    Is this correct? $$ \text{B.C.}=\begin{cases} T_x(0,t) = 0\\ T(\pi,t) = 1 \end{cases} $$ The I.C. is $T(x,0) = 0$. The equation is $\frac{1}{\alpha}T_t = T_{xx}$.$$ \varphi(x) = A\cos\lambda x + B\frac{\sin\lambda x}{\lambda} $$ and $$ \psi(t) = C\exp\left(-\alpha\lambda^2t\right). $$ First...
  28. F

    Solution to a PDE (heat equation) with one initial condition

    Homework Statement By trial and error, find a solution of the diffusion equation du/dt = d^2u / dx^2 with the initial condition u(x, 0) = x^2. Homework Equations The Attempt at a Solution Given the initial condition, I tried finding a solution at the steady state (du/dt=0)...
  29. A

    FDM Heat Equation FTCS Scheme with NBC

    Homework Statement I have a quiz question that I'm struggling with. We've been working on using a FTCS scheme with two Essential Boundary Conditions, and now I have a problem with one EBC (ie static) and a Natural Boundary Condition (ie a derivative). The condensed problem statement: u_{t} =...
  30. R

    PDE - Solve heat equation with convection

    Homework Statement Solve u_t -k u_xx +V u_x=0 With the initial condition, u(x,0)=f(x) Use the transformation y=x-Vt Homework Equations The solution to the equation u_t - k u_xx=0 with the initial condition is u(x,t)=1/Sqrt[4\pi kt] \int e^(-(x-y)^2 /4kt)f(y) dy The Attempt at a...
  31. A

    Solving one dimension steady state heat equation with finite differences

    I have a project where I need to solve T''(x) = bT^4 ; 0<=x<=1 T(0) = 1 T'(1) = 0 using finite differences to generate a system of equations in Matlab and solve the system to find the solution So far I have: (using centred 2nd degree finite difference) T''(x) = (T(x+h) - 2T(x) +...
  32. G

    Mathematica [Mathematica] Solving Heat Equation in Spherical Coordinates

    Hello Folks, I have this equation to solve (expressed in LaTeX): \frac{\partial{h}}{\partial t} = \frac{1}{n} \left[ \frac{1}{r^2 \sin^2{\phi}} \frac{\partial}{\partial \theta} \left( K \frac{\partial h}{\partial \theta} \right) + \frac{1}{r^2 \sin \phi} \frac{\partial}{\partial \phi}...
  33. J

    Heat equation and maximum principle

    Homework Statement Suppose that u(x,t) satisfies the heat equation u_{t}=u_{x x} for 0<x<L and t>0 with initial condition u(x,0)=θ(x) and boundary conditions u(0,t)=u(L,t)=0. Suppose that θ(x)>0 for 0<x<L. Explain why u(x,t)>0 for all 0<x<L and t>0 Homework Equations Strong Maximum principle...
  34. G

    2D heat equation bounday conditions for different intervals

    Homework Statement I have boundary conditions on my heat equation ## \dot{T}(x,t) = T''(x,t) ## ## T(0,t) = T(L,t), ## ## \frac{\partial T(0,t)}{\partial x} = \frac{\partial T(L,t)}{\partial x} ## Then at ## T= 0## ## T(x,0) = 1 ## for ## 0<x<L/4 ## ## T(x,0) = 0 ## for ## L/4<x<L ##...
  35. J

    How Do I Solve a Heat Equation with Unknown Forcing Term p(x, t)?

    Homework Statement vt(x,t)=vxx(x,t) + p(x,t), Neumann boundary conditions, v(x,0)=cos(∏x) Homework Equations Assume v(x,t)=X(x)T(t) The Attempt at a Solution I'm stuck. We aren't given a p(x,t) and I'm not sure what to do. Where do I go from here? Attempt so far:
  36. W

    Why is T''(x) Zero in the Steady State Solution of the Heat Equation?

    Hi, So if I start with the boundary conditions U(0,t) = T1 and U(L,t) = T2 and T1 does not equal T2, it seems that you are supposed to look at the 'steady state solution' (solution as t goes to infinity)? which satisfies T''(x) = 0 so the solutions are T(x) = Ax + B and then you...
  37. C

    Heat Equation (Non Homogeneous BCs) - Difficult Laplace Transform help ;)

    Heat Equation (Non Homogeneous BCs) - Difficult Laplace Transform... help! ;) Hi I'm trying to model the temperature profile of an inertia friction welding during and after welding. I have the welding outputs and have come up with a net heat flow wrt time during the process. I now want to...
  38. C

    Conduction - Heat Equation - Units Don't Add Up

    Conduction - Heat Equation - Units Don't Add Up! Hi there I have what I think/hope is a simple question: I've been working on heat inputs and outputs in inertia friction welds and have managed to produce a net power term (W) as a function of time. I now want to use that in the heat...
  39. G

    Heat Equation Homework: Find F(x,t)

    Homework Statement F(x,t) satisfies \frac{\partial^2 F(x,t)}{\partial x^2}=\frac{\partial F(x,t)}{\partial t} With the following boundary conditions \frac{\partial F(0,t)}{\partial x}=\frac{\partial F(1,t)}{\partial x} F(0,t) = F(1,t) F(x,0) = x^2 \text{ for } x \in (0,1) The...
  40. J

    Heat Equation: Boundary Value Problem

    http://img821.imageshack.us/img821/7901/heatp.png Uploaded with ImageShack.us I'm having difficulty with the boundary conditions on this problem. I don't need a solution or a step by step. I've just never solved a boundary condition like this. Its the u(pi,t) = cos(t) that is giving me...
  41. M

    MHB Solve Heat Equation with Initial Conditions

    Solve $\begin{aligned} & {{u}_{tt}}={{u}_{xx}},\text{ }x\in [0,1],\text{ }t>0, \\ & u(x,0)=f(x), \\ & {{u}_{t}}(x,0)=0,\text{ }u(0,t)=u(1,t)=0 \\ \end{aligned} $ where $f(x)$ is defined by $f(x)=x$ if $0\le x\le \dfrac12$ and $f(x)=1-x$ if $\dfrac12\le x\le1.$ I'm not sure how to...
  42. M

    Looking for method to use in final step in heat equation problem

    Homework Statement The original problem is to solve u_t=u_xx+x with u(x,0)=0 and u(0,t)=0 by assuming there is a solution t^a*u(r), where r=x/t^b and a,b are constants Homework Equations The Attempt at a Solution This is a long problem, so I'm not writing everything. Following the...
  43. fluidistic

    Heat equation, Fourier cosine transform

    Homework Statement Problem 8-17 from Mathew's and Walker's book: Use a cosine transform with respect to y to find the steady-state temperature distribution in a semi-infinite solid x>0 when the temperature on the surface x=0 is unity for -a<y<a and zero outside this strip. Homework...
  44. M

    MHB Solving a Heat Equation with $\sin \pi x$

    Hi! I need to find out how to solve this type of heat equations: $$\large \frac{du}{dt} - \frac{d^2u}{dx^2} = \sin \pi x$$ $$\large u|_{t=0} = \sin 2\pi x $$ $$\large \large u|_{x=0} = u|_{x=1} = 0$$ I know what the solution to this but I can't solve it myself. The problem is that all over...
  45. N

    Steady State Heat Equation in a One-Dimensional Rod

    Homework Statement Determine the equilibrium temperature distribution for a one-dimensional rod composed of two different materials in perfect thermal contact at x=1. For 0<x<1, there is one material (cp=1, K0=1) with a constant source (Q=1), whereas for the other 1<x<2 there are no sources...
  46. R

    Formal Solution for Heat Equation using Fourier Series

    Homework Statement Find a formal solution of the heat equation u_t=u_xx subject to the following: u(0,t)=0 u_x(∏,t)=0 u(x,0)=f(x) for 0≤x≤∏ and t≥0 Homework Equations u(x,t)=X(x)T(t)The Attempt at a Solution I first began with a separation of variables. T'(t)=λT(t) T(t) =...
  47. C

    Help for Heat Equation - Questions from Chen

    1 .) i added several problems which i couldn't understand the approach for solving them. i'm kinda confused, will glad if someone would guide me. 2.) in class we've talked about and calculated . n orders(0,1,2,3) of moments, how is it to do with the heat equations? and what is the...
  48. M

    Heat Equation for Compressible Fluids: Valid or Not?

    Hi everyone, I am wondering if the heat equation is valid for compressible fluids like air. This is assuming constant 100% humidity. If it is not then how close is the appoximation. The model assumes that heat moves through an array of air only by conduction. At the moment I use a...
  49. A

    Heat equation in the first quadrant.

    Homework Statement Solve the heat equation u_t=u_{xx}+u_{yy} fot t>0 in the first quadrant of \mathbb{R}^2. The boundary conditions are u(0,y,t)=u(x,0,t)=0 and the initial temperature distribution is f(x,y)= \begin{cases} 1 \;\;\;\; \text{in the square } \; 0<x<1; \; 0<y<1 \\ 0 \;\;\;\...
  50. L

    Calculating Latent Heat of Vaporisation: 3 kW Kettle, 2.0 kg Water @ 100oC

    A 3 kW kettle contains 2.0 kg of water at a temperature close to 100oC. Latent heat of vaporisation for water: Lv=2256 (kJ kg^-1) Q= Lv x mass Ok I understand this problem because I now the answer but I don't understand the process. Like my teacher wrote 2256x10^3 why he wrote...
Back
Top