Hermitian Definition and 347 Threads
-
T
Is (A+B)^n Hermitian if A and B Are Hermitian Matrices?
Homework Statement Prove that if A and B are hermitian, so is (A+B)^n Homework Equations if an operator is hermitian then it is equal to its conjugate (A= A+) The Attempt at a Solution im pretty much bad when it comes to math, any hints would be appreciated .. thanks in...- thebigstar25
- Thread
- Hermitian
- Replies: 2
- Forum: Advanced Physics Homework Help
-
J
Hermitian matrix vector space over R proof
Homework Statement I need to prove that the hermitian matrix is a vector space over R Homework Equations The Attempt at a Solution I know the following: If a hermitian matrix has aij = conjugate(aji) then its easy to prove that the sum of two hermitian matrices A,B give a hermitian...- Jimena29
- Thread
- Hermitian Matrix Proof Space Vector Vector space
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
D
Hermitian operator-prove product of operators is Hermitian if they commute
Hermitian operator--prove product of operators is Hermitian if they commute Homework Statement If A and B are Hermitian operators, prove that their product AB is Hermitian if and only if A and B commute. Homework Equations 1. A is Hermitian if, for any well-behaved functions f and g...- Dunhausen
- Thread
- Commute Hermitian Operators Product
- Replies: 9
- Forum: Advanced Physics Homework Help
-
K
Is a projection operator hermitian?
I was reading Lie Algebras in Physics by Georgi......second edition... Theorem 1.2: He proves that every finite group is completely reducible. He takes PD(g)P=D(g)P ..takes adjoint...and gets.. P{D(g)}{\dagger} P=P {D(g)}{\dagger} So..does this mean that the projection...- krishna mohan
- Thread
- Hermitian Operator Projection
- Replies: 3
- Forum: Linear and Abstract Algebra
-
B
Are K1 and K2 Hermitian or Anti-Hermitian?
A and B are two Hermitian vector operators. K1=AXB, K2=AXB-BXA. Are K1 and K2 hermitian or anti-hermitian?- ber70
- Thread
- Hermitian
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
B
Are the Vector Operators K1 and K2 Hermitian or Anti-Hermitian?
A and B are two hermitian vector operators. K1=AXB, K2=AXB-BXA. Are K1 and K2 hermitian or anti-hermitian?- ber70
- Thread
- Cross Hermitian
- Replies: 1
- Forum: Advanced Physics Homework Help
-
G
Hermitian conjugation and conserved current in the Dirac equation
Consider the Dirac equation in the ordinary form in terms of a and \beta matrices i\frac{{\partial \psi }} {{\partial t}} = - i\vec a \cdot \vec \nabla \psi + m\beta \psi The matrices are hermitian, \vec a^\dag = \vec a,\beta ^\dag = \beta . Daggers denote hermitian...- gheremond
- Thread
- Current Dirac Dirac equation Hermitian
- Replies: 2
- Forum: Quantum Physics
-
W
LaTeX Latex code for Hermitian Conjugate
Hi there, Does anyone know the Latex code for Hermitian conjugate (dagger) on TeXniccenter? Thank you!- wam_mi
- Thread
- Code Conjugate Hermitian Latex
- Replies: 1
- Forum: MATLAB, Maple, Mathematica, LaTeX
-
Eigenpairs and Hermitian matrices
Homework Statement Choose \lambda_{1}, \lambda_{2}, \lambda_{3} along with a set of vectors {v_{1},v_{2},v_{3}} and construct an Hermitian matrix H with the eigenpairs (\lambda_{1},v_{1}),(\lambda_{2},v_{2}),(\lambda_{3},v_{3}) Homework Equations The Attempt at a Solution...- Somefantastik
- Thread
- Hermitian Matrices
- Replies: 6
- Forum: Calculus and Beyond Homework Help
-
C
Hermitian Operators and Inner Products
Homework Statement Consider the vector space of square-integrable functions \psi(x,y,z) of (real space) position {x,y,z} where \psi vanishes at infinity in all directions. Define the inner product for this space to be <\phi|\psi> = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}...- csnsc14320
- Thread
- Hermitian Operators
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
M
Hermitian positive definite matrix
Let P and Q be Hermitian positive definite matrices. We prove that x*Px < or eq. x*Qx, for all x in C^n (C : complex numbers) if and only if x*Q^-1 x < or eq. x*P^-1 x for all x in C^n. I guess I should use the definition of a hermitian positive definite matrix being x*Px > 0 , for all x in...- math8
- Thread
- Hermitian Matrix Positive
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
R
Hermitian operators in schrodinger eqn.
If the Hamiltonian is given by H(x,p)=p^2+p then is it Hermitian? I'm guessing it's not, because quantum-mechanically this leads to: H=-h^2 \frac{d^2}{dx^2}-ih\frac{d}{dx} and this operator is not Hermitian (indeed, for the Sturm-Liouville operator O=p(x)\frac{d^2}{dx^2}+k(x)\frac{d}{dx}+q(x)...- RedX
- Thread
- Hermitian Operators Schrödinger
- Replies: 1
- Forum: Quantum Physics
-
R
Hermitian inner product btw 2 complex vectors & angle btw them
What is the relationship btw the Hermitian inner product btw 2 complex vectors & angle btw them. x,y are 2 complex vectors. \theta angle btw them what is the relation btw x^{H}y and cos(\theta)?? Any help will be good?- raja0088
- Thread
- Angle Complex Complex vectors Hermitian Inner product Product Vectors
- Replies: 1
- Forum: Linear and Abstract Algebra
-
K
Why Is the Hermiticity of the Density Operator Important in Quantum Mechanics?
Hi there, In all text of QM I have, they tells that the density operator is hermitian. But without considering the math, from the physics base, why density operator must be hermitian? What's the physical significane of the eigenvalue of density matrix? Thanks- KFC
- Thread
- Density Density operator Hermitian Operator Physical Significance
- Replies: 4
- Forum: Quantum Physics
-
T
Definition of Hermitian Operator in Dirac Notation
Homework Statement Using Dirac notation (bra, kets), define the meaning of the term "Hermitian". Homework Equations The Attempt at a Solution From what I understand, a hermitian operator is simply one that has the same effect as its hermitian adjoint. So, I'm assuming it should...- trv
- Thread
- Hermitian Hermitian operator Operator
- Replies: 1
- Forum: Advanced Physics Homework Help
-
L
Show \hat{O}^2 is Hermitian Given \hat{O} is Hermitian
If \hat{O} is hermitian, show that \hat{O}^2 is hermitian. we have <\psi|\hat{O}^2|\psi>^* = <\psi|\hat{O}\hat{O}|\phi>^*=<\phi|\hat{O}^{\dagger} \hat{O}^{\dagger}|\psi>=<\phi|\hat{O}\hat{O}|\psi>=<\phi|\hat{O}^2|\psi> which works (hopefully)! to do this in integral notation is the...- latentcorpse
- Thread
- Hermitian Hermitian operator Operator
- Replies: 8
- Forum: Advanced Physics Homework Help
-
K
Hermitian Operators: Homework Equations & Attempt at a Solution
Homework Statement Homework Equations The Attempt at a Solution I've gone round in circles doing this! I started of by writing it as an integral of (psi* x A_hat2 x psi) w.r.t dx, then using the equation above but I keep coming back at my original equation after flipping it...- kehler
- Thread
- Hermitian Operators
- Replies: 6
- Forum: Advanced Physics Homework Help
-
L
Proving $\hat{O}\hat{O}^\dagger$ is Hermitian
pretty simple question. have to prove \hat{O} \hat{O}\dagger is a Hermitian operator. i found that \left( \int \int \int \psi^{\star}(\vec{r}) \hat{O} \hat{O}^{\dagger} \phi(\vec{r}) d \tau \right)^{\star} = \int \int \int \phi^{\star}(\vec{r}) \hat{O}^{\dagger} \hat{O} \phi(\vec{r}) d...- latentcorpse
- Thread
- Conjugate Hermitian
- Replies: 15
- Forum: Advanced Physics Homework Help
-
F
Hermitian Operators and Eigenvalues
Homework Statement C is an operator that changes a function to its complex conjugate a) Determine whether C is hermitian or not b) Find the eigenvalues of C c) Determine if eigenfunctions form a complete set and have orthogonality. d) Why is the expected value of a squared hermitian...- FlagellumDei
- Thread
- Eigenvalues Hermitian Operators
- Replies: 5
- Forum: Advanced Physics Homework Help
-
S
How Is the Hermitian Adjoint of a Covariant Differential Operator Calculated?
Homework Statement Im am considering a covariant differential: D_\mu H = ( partial_\mu + \frac{1}{2} i g \tau_j W_{j\mu} + ig B_\mu ) H H is an isospiner, \tau_j are the pauli spin matrices, \partial_\mu is the four-gradient \frac{\partial}{\partial x^\mu} and W_{j \mu} and B_\mu are...- student111
- Thread
- Hermitian Operator
- Replies: 1
- Forum: Advanced Physics Homework Help
-
P
Commutator and hermitian operator problem
Hi all, i cannot find where's the trick in this little problem: Homework Statement We have an hermitian operator A and another operator B, and let's say they don't commute, i.e. [A,B] = cI (I is identity). So, if we take a normalized wavefunction |a> that is eigenfunction of the operator A...- p2bne
- Thread
- Commutator Hermitian Hermitian operator Operator
- Replies: 10
- Forum: Advanced Physics Homework Help
-
T
Traceless hermitian matrices form groups?
is the set of nxn traceless hermitian matrices under addition a group? is the set of nxn traceless hermitian matrices under multiplication a group? is the set of nxn traceless non-hermitian matrices under addition a group? question 1-I thought that traceless means trace=0 is this right...- TheIsingGuy
- Thread
- Form Groups Hermitian Matrices
- Replies: 5
- Forum: Advanced Physics Homework Help
-
P
What can be done when eigenvalues of a Non Hermitian Hamiltonian are complex?
I have a question..I am trying to solve a differential equation that arises in my research problem. Because the differential equation has no solution in terms of well known functions, I had to construct a series solution for the differential equation which is physical and agrees with the...- Physicslad78
- Thread
- Hamiltonian Hermitian
- Replies: 9
- Forum: Quantum Physics
-
M
Proving Hermitian if it has real eigenvalues
If you had an operator A-hat whose eigenvectors form a complete basis for the Hilbert space has only real eigenvalue how would you prove that is was Hermitian?- maddogtheman
- Thread
- Eigenvalues Hermitian
- Replies: 9
- Forum: Quantum Physics
-
Y
What is the Hermitian Conjugate of 5+6i?
What is the Hermitian conjugate of a complex #, say, 5+6i??- yzou_ua
- Thread
- Conjugate Hermitian
- Replies: 3
- Forum: General Math
-
N
Hermitian Operators and the Commutator
Homework Statement If A is a Hermitian operator, and [A,B]=0, must B necessarily be Hermitian as well? Homework Equations The Attempt at a Solution- njcc7d
- Thread
- Commutator Hermitian Operators
- Replies: 6
- Forum: Advanced Physics Homework Help
-
P
Prove that any Hermitian operator is linear
Homework Statement Simply--Prove that any Hermitian operator is linearHomework Equations Hermitian operator defined by: int(f(x)*A*g(x)dx)=int(g(x)*A*f(x)dx) Linear operator defined by: A[f(x)+g(x)]=Af(x)+Ag(x) Where A is an operatorThe Attempt at a Solution I am at a complete loss of how to...- Pchemaaah
- Thread
- Hermitian Hermitian operator Linear Operator
- Replies: 14
- Forum: Calculus and Beyond Homework Help
-
N
Linear Algebra: Hermitian Matrices
Homework Statement Hi all. Let's say that I have a Hermitian 2x2 matrix A with two distinct eigenvalues, and thus two eigenvectors. Question 1: What space is it they span? Is it R2? Now let us say I have another Hermitian 2x2 matrix B with two distinct eigenvalues, and thus two...- Niles
- Thread
- Algebra Hermitian Linear Linear algebra Matrices
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
M
Proving Inner Product with Hermitian Adjoint: A_hat
Hello, I'm a little bit confused regarding Hermitian Adjoint. I want to show that <x,y> = A(x,y) is an inner product where the function A : V*V --> V be defined as A(x,y) = x^T*A_hat*y. A_hat = [2 1 0; 1 4 1; 0 1 4]. How would i go about showing that <x,y> = A(x,y) is an inner product...- mkt
- Thread
- Hermitian
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
A
Basis of a real hermitian matrix vector space with complex entries
Homework Statement Let V be the \mathbb{R}-vector space \mbox{Herm}_n( \mathbb{C} ). Find \dim_{\mathbb{R}} V. The Attempt at a Solution I'd say the dimension is 2n(n-1)+n=2n^2-n, because all entries not on the main diagonal are complex, so you have n(n-1) entries which you have to...- _Andreas
- Thread
- Basis Complex Hermitian Matrix Space Vector Vector space
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
B
Proof: V is an invariant subspace of Hermitian H
Homework Statement If \vec{x} is an eigenvector of a Hermitian matrix H, let V be the set of vectors orthogonal to \vec{x} . Show that V is a subspace, and that it is an invariant subspace of H. The Attempt at a Solution The Hermitian H must act on some linear space, call it K and of...- buffordboy23
- Thread
- Hermitian Invariant Proof Subspace
- Replies: 10
- Forum: Calculus and Beyond Homework Help
-
S
Eigenkets of a function of a hermitian operator
For a hermitian operator A, does the function f(A) have the same eigenkets as A? This has been bothering me as I try to solve Sakurai question (1.27, part a). Some of my class fellows decided that it was so and it greatly simplifies the equations and it helps in the next part too but I don't...- shehry1
- Thread
- Function Hermitian Hermitian operator Operator
- Replies: 3
- Forum: Quantum Physics
-
H
Hermitian vs. self-adjoint operators
Hello, what's the difference between Hermitian and self-adjoint operators? Our professor in Group Theory made a comment once that the two are very similar, but with a subtle distinction (which, of course, he failed to mention :smile: ) Thanks!- Heirot
- Thread
- Hermitian Operators
- Replies: 10
- Forum: Linear and Abstract Algebra
-
K
Check If Operator Is Hermitian: Real Eigenvalue Test
How to check if an operator is hermitian? I mean what is the condition Actualy, i am using the principe that say that the eigenvalue associated with the operator must be a REAL NUMBER.That is to say that i work out to that eigenvalue and see if it is a real number. Am i right?- kthouz
- Thread
- Hermitian Hermitian operator Operator
- Replies: 4
- Forum: Quantum Physics
-
M
Hermitian Operator C: Eigenfunctions and Eigenvalues
Homework Statement Ok, here is another little pickle. I am trying to determine what the eigenfunctions and eigenvalues are for the operator C that is defined such that C phi(x) = phi*(x). Part a wants to know if this is a Hermitian operator. Parts b,c want eigenfunctions and eigenvalues...- mhazelm
- Thread
- Hermitian
- Replies: 7
- Forum: Advanced Physics Homework Help
-
K
Testing if the momentum operator is Hermitian
Hi. I'm not too good at maths and I'm having some trouble figuring out the basics of what to do with complex conjugates of functions. Our lecturer has set a couple problems requiring us to test if a few operators are Hermitian. Before I can get to those I thought I'd test the basic momentum...- kkan2243
- Thread
- Hermitian Momentum Operator Testing
- Replies: 4
- Forum: Quantum Physics
-
T
Eigenvalue question, hermitian matrix
I read from a book and claim that for any hermitian matrix can be diagonalized by a unitary matrix whose columns represent a complete set of its normalized eigenvectors. It then given an equation...- thedean515
- Thread
- Eigenvalue Hermitian Matrix
- Replies: 6
- Forum: Linear and Abstract Algebra
-
D
When are the solutions for \hat{R} being Hermitian?
Let us define \hat{R} = |\psi_m\rangle \langle \psi_n| where \psi_n denotes the nth eigenstate of some Hermitian operator. When is \hat{R} Hermitian? Solution? Well, let us just call |psi_m> = |m> and |psi_n> = |n>. Now, we need |m><n| = |n><m| If we left multiply by <m| then we find...- Domnu
- Thread
- Hermitian Hermitian operator Operator
- Replies: 1
- Forum: Advanced Physics Homework Help
-
D
Is the Operator C Hermitian and What are the Eigenfunctions and Eigenvalues?
Problem Consider the operator \hat{C} which satisfies the property that \hat{C} \phi (x) = \phi ^ * (x). Is \hat{C} Hermitian? What are the eigenfunctions and eigenvalues of \hat{C}? Solution We have \hat{C} \phi = \phi ^ * \iff \phi^* \hat{C}^\dagger = \phi Substituting back into...- Domnu
- Thread
- Hermitian Hermitian operator Operator
- Replies: 2
- Forum: Advanced Physics Homework Help
-
P
Is the Radial Momentum Operator Hermitian?
Does anyone has proof of radial momentum operator as an Hermitian operator? Thanks.- plarq
- Thread
- Hermitian Momentum Radial
- Replies: 1
- Forum: Quantum Physics
-
D
Show How to Write A as B + iC: Hermitian Operators
How do I show that an arbitrary operator A can be writte as A = B + iC where B and C are hermitian?- Dragonfall
- Thread
- Hermitian Hermitian operator Operator
- Replies: 2
- Forum: Linear and Abstract Algebra
-
L
Hermitian adjoint of the time derivative?
So I had a QM test today and I needed to show that the energy operator is hermitian. This was easy to show provided that the the adjoint of d/dt is -d/dt. I know this is the case for the spatial derivative but is it the case with the time derivative? The bra-ket is an integral over x not time...- leright
- Thread
- Derivative Hermitian Time Time derivative
- Replies: 7
- Forum: Quantum Physics
-
P
Spectrum of Hermitian operator
Homework Statement Show that the spectrum \sigma of a linear continuous Hermitian operator A on a Hilbert space H consist of real numbers, ie \sigma(A)\subset \mathbb{R} . Homework Equations Well the spectrum of A are the elements \lambda\in\mathbb{C} such \lambda I - A is NOT...- P3X-018
- Thread
- Hermitian Hermitian operator Operator Spectrum
- Replies: 20
- Forum: Calculus and Beyond Homework Help
-
P
C/C++ Solving Hermitian matricies in C/C++
I've been struggling for awhile, I've been trying to use CLAPACK to avoid learning Fortan. I think I've just a linking problem, since I've been testing code that's supposed to work. in the VC command prompt i type cl dgesv.c and I get the error LNK2019: unresolved external symbol...- Pozarnik
- Thread
- Hermitian Matricies
- Replies: 3
- Forum: Programming and Computer Science
-
R
Hermitian Conjugate of Matrix Explained
Simple question, and pretty sure I already know the answer - I just wanted confirmation, Considering the Hermitian Conjugate of a matrix, I understand that A^{+} = A where A^{+} = (A^{T})^{*} Explicitly, (A_{nm})^{*} = A_{mn} Would this mean that for a matrix of A, where A is a...- raintrek
- Thread
- Conjugate Hermitian
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
J
Understanding the Definition of the Adjoint Operator in Linear Algebra
Is there any other difference between self-adjoint operators, and Hermitian operators, than that mathematicians seem to talk mostly about self-adjoint operators, and physicists seem to talk mostly about Hermitian operators?- jostpuur
- Thread
- Hermitian
- Replies: 7
- Forum: General Math
-
E
Hermitian Operator: Why (p-hat)^2 ≠ (p)^2
Homework Statement Since the momentum operator is Hermitian why is this wrong: <psi| (p-hat)^2 |psi> = <psi| p-hat p-hat |psi> = <p-hat psi| p-hat |psi> = (p)^2 where p is the expectation value of the momentum. Homework Equations The Attempt at a Solution- ehrenfest
- Thread
- Hermitian Hermitian operator Operator
- Replies: 17
- Forum: Advanced Physics Homework Help
-
P
Show Lx is Hermitian: Homework Equation Integration
Homework Statement I have to show that in 3-d, Lx (angular momentum) is Hermitian. Homework Equations In order to be Hermitian: Integral (f Lx g) = Integral (g Lx* f) Where Lx=(hbar)/i (y d/dz - z d/dy) and f and g are both well behaved functions: f(x,y,z) and g(x,y,z) The Attempt...- physgirl
- Thread
- Hermitian
- Replies: 8
- Forum: Advanced Physics Homework Help
-
Q
Is Lambda Psi a an Eigenstate of Hermitian Operator A?
problem based on hermitian operator Homework Statement A is an hermitian operator and as we know the eigenstates a of A with eigenvalues a satisfy A psi a = a psi a. How do we show that lambda psi a (lambda is a non zero complex number) is an eigen state belonging to the same eigen...- quantum_prince
- Thread
- Hermitian Hermitian operator Operator
- Replies: 8
- Forum: Advanced Physics Homework Help
-
N
Expectation of an Hermitian operator is real.
Homework Statement WTS \langle \hat{A} \rangle = \langle \hat{A} \rangle^\ast The Attempt at a Solution \langle \hat{A} \rangle^\ast = \left(\int \phi_l^\ast \hat{A} \phi_m dx\right)^\ast=\left(\int (\hat{A}\phi_l)^\ast \phi_m dx\right)^\ast= \int \phi_m^\ast \hat{A}\phi_l dx. So...- noospace
- Thread
- Expectation Hermitian Hermitian operator Operator
- Replies: 1
- Forum: Advanced Physics Homework Help