Hello! :)
Knowing that $\forall k,n \in \mathbb{Z}_{\geq 0} : C(n,0)=1, C(n,k)=0 \text{ for } k>n, C(n,k)=C(n-1,k)+C(n-1,k-1) \text{ for } 1 \leq k \leq n$
show that $\forall 1\leq k \leq n, n \in \mathbb{N}, C(n,k)=\frac{n!}{k!(n-k)!}$
That's what I have done:
For $n=1...