Homework Statement
Consider the infinite series $$\frac{x}{e^x - 1} = A_o + A_1 x + \frac{A_2}{2!}x^2 + ... + \frac{A_n}{n!}x^n + ...$$ Determine that ##1 = A_o,\,\,\,\,\,0 = A_o/2! + A_1,\,\,\,\,\,0 = A_o/3! + A_1/2! + A_2/2!##.
Show that for ##n > 1##, one can write the relations as $$(A+1)^n...