If $\left| a \right| \le b$, then $-b\le a\le b$.
Let $a,b \in\Bbb{R}$ The definition of the absolute value is $ \left| x \right|= x, x\ge 0$ and $\left| x \right|=-x, x< 0$, where x is some real number.
Case I:$a\ge 0$, $\left| a \right|=a>b$
Case II: a<0, $\left| a \right|=-a<b$the solution...