Problem:
Suppose V is a complex vector space of dimension n, and T is a linear map from V to V. Suppose $x \in V$, and p is a positive integer such that $T^p(x)=0$ but $T^{p-1}(x)\ne0$.
Show that $x, Tx, T^2x, ... , T^{p-1}x$ are linearly independent.During class my professor said it was "a...