I need to develop $\mathrm{ln}(x)$ into series, where $x \geq 1$, and I don`t know how? In literature I only found series of $\mathrm{ln}(x)$, where:
1. $|x-1| \leq 1 \land x \neq 0$, $ \,\,\,\,\, \mathrm{ln}(x) = x - 1 - \dfrac{(x-1)^2}{2} + ...$ 2. $|x| \leq 1 \land x \neq -1$, $ \,\,\,\,\...