Spin Definition and 1000 Threads

  1. Garlic

    I How does the expectation value of the spin operator evolve over time?

    Dear PF, As an excercise I am to find out how the expectation value of the spin operator evolves over time. There was a hint, stating that it is enough to show that $$ e^{i \frac{\phi ( \hat{n} \cdot \sigma )}{2}} \sigma_i e^{- i \frac{\phi ( \hat{n} \cdot \sigma )}{2}} = [R_{ \hat{n} }]_{ij}...
  2. S

    Torque required to spin a hollow cylinder

    Hello all and thanks for viewing this, I am in need of some assistance to solve a problem to size an AC motor rotating this load (power transmission will be trough belt & pulley). I have a hollow cylinder (pipe) that needs to spin 25 RPM: - OD = 50 mm - ID = 48 mm - M = 200 kg - Total length...
  3. L

    A Why do we study quantum spin liquids?

    What kind of research is currently going on in the field of quantum spin liquids and why do we study spin liquids?
  4. R

    Relation between spin dephasing time T2* and spin relaxation time

    Homework Statement: spin dephasing time Homework Equations: spin relaxation time Hello, i have seen the next equation that relates the spin dephasing time of an ensemble of électrons T2* with the spin relaxation of a single electron T2, and I would like to know how it was deduced/proposed...
  5. entropy1

    I Does a measurement setup determine the reality of spin measurement outcomes?

    Summary: If a measurement outcome depends on the measurement setup, is de measured not real or the measurement? If the factual outcome of an electron-spin measurement depends on the orientation of the SG magnet, for instance up or down in one orientation and left or right in the other, does...
  6. A

    Bubble chamber experiment on a K− beam

    Hello everybody! Let's begin with the spin. Spin of the ##\Lambda## is ##1/2## and of the pion is ##0##: $$ \frac{1}{2} \otimes 0 = \frac{1}{2}$$ Since I know from the homework statement that ##L=1##: $$ \textbf{J} = \textbf{spin} \otimes \textbf{L} = \frac{1}{2} \otimes 1 = \frac{1}{2} \oplus...
  7. schwarzg

    A Simultanious eigenstate of Hubbard Hamiltonian and Spin operator in tw

    Please see this page and give me an advice. https://physics.stackexchange.com/questions/499269/simultanious-eigenstate-of-hubbard-hamiltonian-and-spin-operator-in-two-site-mod Known fact 1. If two operators ##A## and ##B## commute, ##[A,B]=0##, they have simultaneous eigenstates. That means...
  8. R

    What if the Earth would have spin around itself twice as it's speed?

    Summary: What if the Earth would have spin around itself twice as it's speed? What would have be the consequences? How would has it affect the climate and living things?
  9. jdou86

    How do I understand spin in quantum mechanics for Physics GRE question 2?

    Summary: please help me understand the following questions from Physics GRE test Thank you very much! To be honest i really hate this formalism. Memorizing such things is pain. but like everything it is what it is
  10. H

    I Is an electron's spin always in some definite direction?

    In other words, does there exist, for an electron, a definite direction in physical space such that a measurement of its spin along that direction always give spin up, 100% of the time?
  11. H

    I Wave function when there is coupling between spin and position

    Why can't the general state, in the presence of coupling, take the form $$\psi_-(r)\chi_++\psi_+(r)\chi_-$$ where ##\psi_+(r)## and ##\psi_-(r)## are respectively the symmetric and anti-symmetric part of the wave function, and ##\chi_+## and ##\chi_-## are respectively the spinors representing...
  12. H

    I Spherical Symmetry & Electron Spin: An Exploration

    Can an electron in a spherically symmetrical potential energy function have non-zero spin angular momentum?
  13. E

    B Confusion over spin measurements

    I will refer to the spin example outlined in the opening chapters of the Theoretical minimum. Suppose we prepare a spin with a z component of +1. If we rotate the apparatus about 180 degrees, the ‘classical component’ of the prepared spin vector along the new axis of the detector is -1, so...
  14. pallab

    A Pauli's spin matrices in higher order

    What are the rules to write Pauli's spin matrices in higher-order matrices (especially in 4x4 matrices)
  15. I

    I What Is the Mystery Behind Particle Spin and Bell's Inequality?

    I know there are numerous threads on this and I have read quite a bit such as EPR and Bell's inequality. I hope I can ask this the right way: A particle has 0 spin and gives off two children particles with spins -1/2 and +1/2 (we don't know which is which yet, or they have to end up this way...
  16. T

    Solving Ising Spin 1 Model w/ Transfer Matrix Method

    I did the first part using the transfer matrix method: $$ Z = Tr(T^{N}) $$ In this case, the transfer matrix will be $$ T(i,i') = \begin{pmatrix} e^{\beta J} & 1 & e^{-\beta J}\\ 1 &1 &1 \\ e^{-\beta J} & 1 & e^{\beta J} \end{pmatrix} $$ To get the trace of $T^N$, you find the...
  17. hilbert2

    I Notation for vectors in tensor product space

    Suppose I have a system of two (possibly interacting) spins of 1/2. Then the state of each separate spin can be written as a ##\mathbb{C}^2## vector, and the spin operators are made from Pauli matrices, for instance the matrices ##\sigma_z \otimes \hat{1}## and ##\hat{1} \otimes \sigma_z##...
  18. muonion

    I Do spin operators 'appear' to commute for an entangled spin state?

    Let's consider Bohm's paradox (explaining as follows). A zero spin particle converts into two half-spin particles which move in the opposite directions. The parent particle had no angular momentum, so total spin of two particles is 0 implying they are in the singlet state. Suppose we measured Sz...
  19. QuarkDecay

    I How to know where the up and down spin go in the wavefunction?

    We are given the wave function with spin, but it doesn't say in which Ylm each spin X± goes. So how do I know? Examples; (1) Ψ = 1/√3 R21(r) ( Y10 √2Y11 ) Here we have the up Spin X+ to Y10 and the X- to Y11 I notice the X- went to...
  20. J

    I Can You Help Me Couple 3 Spin 1/2 Particles?

    Hello, I'm trying to couple 3 spin 1/2 particles. So far, I have been able to find the coefficient for the other states but I can't get the results for ##j_{12} = 0## to ##j_3=1/2##. Here is my attempt: 1) Using CG table...
  21. S

    I Explanation of spin degrees of freedom with respect to the x axis

    Hey Guys/Gals i understand the general premise of this question and can calculate the solution but i am a bit confused. I am supposed to represent a generic state as a linear combination of the |-,x> , |+,x> basis vectors. However i don't know why, is the question actually asking for the...
  22. Arman777

    Python What is the Winning Probability in Monte Carlo Spinner Game?

    Problem: Here’s a little Monte Carlo challenge problem, Consider the following game, which uses the two spinner disks. Suppose a player spins one or the other of the pointers on the disks according to the following rules: (1) if the player spins pointer ##i## and it stops in the region with area...
  23. Z

    I Pauli spin matrices under inversion and 180 degree rotation?

    How do the Pauli spin matrices transform under an inversion ? I think I mean to say the 3 dimensional improper rotation which is just in 3 dimensional matrix notation minus the identity - so exactly how are the 2 dimensional Pauli spin matrices changed. And under a 180 rotation do the 'y' and...
  24. V

    I Why does the Dirac equation lead to spin 1/2?

    Why does the derivation of the Dirac equation naturally lead to spin ½ particles? The equation is derived from very general starting assumptions, so which of these assumptions has to be wrong to give us a spin-0 or spin-1 particle? I have tried to search for an answer and got as far as this...
  25. J

    A Graphene Spin Relaxation: Getting Started

    Recently, I want to study spin relaxation in graphene, but I don't know how to get start. Can anyone tell me which papers should I read for beginning so that I can have a deeper insight in it theorically and experimentally ?
  26. aabottom

    I M87 Black Hole Photos and the Spin Orientations

    M87 Black Hole Photos and the Orientations the Angular Momentum of the Black Hole and that of the Accretion Disk. I’m trying to understand the orientations the angular momentum (let’s call it spin) of the black hole and that of the accretion disk. Veritasium has good video on the topic [1], but...
  27. L

    I Two identical spin 1/2 particles

    I am studying identical particles and I have some doubts. Considerer two identical spin 1/2 particles interacting through a central potential ##V##. In the rest of CM, the hamiltonian is $$ H = \frac{\textbf{P}^{2}}{2M} + \frac{\textbf{p}^{2}}{2\mu} + V(r),$$ where ##\textbf{P}## is the momentum...
  28. remormalise

    I Unveiling the Mystery of Entangled Particle Spin

    If you change the spin of an entangled particle without knowing its original spin, what happens to the other entangled particle?
  29. A

    A Has the 2-stage Stern-Gerlach experiment been performed?

    In http://www.feynmanlectures.caltech.edu/III_05.html#Ch5-S1, Feynman mentions that the 2-stage Stern-Gerlach experiment, which proves the electron spin states to be in a superposition, has never been actually done! I have also not seen any paper reporting such an experiment. My question is, has...
  30. M

    I Spin matrices and Field transformations

    Let us for a moment look a field transformations of the type $$\phi(x)\longmapsto \exp\left(\frac{1}{2}\omega_{\mu\nu}S^{\mu\nu}\right)\phi(x),$$ where ##\omega## is anti-symmetric and ##S^{\mu\nu}## satisfy the commutation relations of the Lorentz group, namely $$\left[S_{\mu \nu}, S_{\rho...
  31. PavanKumar

    A Photon Spin and Polarization filters

    I understand how polarization can be explained using EM waves. However, I am unable to understand how to explain how polarization filters work when we use the concept of photon spins. Can someone help me with that?
  32. P

    I Difference between spin repulsion and electrostatic repulsion of an electron?

    What is the difference between spin repulsion and electrostatic repulsion of an electron? Is this the same mechanism?
  33. H

    I Nuclear spin coupling in molecular (protium) hydrogen

    I'm not sure where this post belongs--here, or nuclear chemistry, quantum mechanics, NMR spectroscopy, etc. Moderator--please feel free to move it to a better location. I'm wondering if a container of liquid hydrogen subjected to a strong magnetic field would have both nuclei of each atom...
  34. cosmik debris

    I Frame Dragging Effect vs Spin Orbit Coupling in GR

    I believe that GR cannot describe exchange of classical intrinsic angular momentum and orbital angular momentum. The exchange of orbital and intrinsic angular momentum requires that the momentum tensor be non-symmetric during the exchange. GR cannot accommodate a non-symmetric momentum tensor...
  35. TheBigDig

    Spin Annhilation and Creator Operators Matrix Representation

    Homework Statement Given the expression s_{\pm}|s,m> = \hbar \sqrt{s(s+1)-m(m\pm 1)}|s,m \pm 1> obtain the matrix representations of s+/- for spin 1/2 in the usual basis of eigenstates of sz Homework Equations s_{\pm}|s,m> = \hbar \sqrt{s(s+1)-m(m\pm 1)}|s,m \pm 1> S_{+} = \hbar...
  36. entropy2information

    B Doesn't the choice of measurement prove free will

    I was reading the free will theorem and it basically says that subatomic particles and observers have to have free will because there's nothing prior to measurement that predetermines the outcome. Here's more: The free will theorem states: Given the axioms, if the two experimenters in question...
  37. filip97

    A What Are the Sigma Barred Variables in Weinberg's Spin Statistics Equation?

    in this equation ##J_{ \overline{ \sigma } \sigma }^{(j)}## what are they sigma bared ? Thanks <mentor edit Latex>
  38. Another

    I The component of the total spin in the direction of H

    i don't understand, Why The component of the total spin in the direction of H is ##M_s = \frac{1}{2}(N_{up}-N_{down})##
  39. F

    A Relation between chirality and spin

    When learning about chirality I was very surprised to find that for QED and QCD the decay modes that would produce 2 particles with the same chirality had a Matrix Element of 0, which I took to mean that angular momentum was being conserved. Even the W only decay into RH antiparticles and LH...
  40. filip97

    I Understanding the Spin-Statistics Theorem: A Modern Notation Approach

    i read that question and Weinberg book (A,B)-Representation of Lorentz Group: Coefficient functions of fields why u(a,b)=Cab/sqrt(2m) ? where Cab is Clebsch-Gordan coefficients, and m is mass of particle
  41. Francisco Dahab

    I About spin precession in a magnetic field

    So I was trying to see what the result for the spin precession would be if the magnetic field pointed in the y-direction instead of z. I feel like either something with what I'm doing is wrong or, I'm just overlooking something because I keep getting complex energy eigenvalues. So what I'm doing...
  42. M

    Spin of a nucleus within an external magnetic field.

    When a nucleus is placed inside an external magnetic field, it aligns itself parallel to the field, as that is the most stable position for it to be in. In more technical terms: it acquires an alpha spin. When you shine radio waves at this nucleus, it absorbs energy and flips over anti-parallel...
  43. J

    Torque on a DC motor spinning a wheel horizontally

    I need a 12v DC with appropriate torque. In my design, the axle of the motor would be pointed straight in the air and I want to affix a wheel to it and have the wheel spin flat, sort of like a pottery wheel sort of design. I know what the wheel is made of, its dimensions and approximate weight...
  44. Edge5

    I Angular momentum and spin unit

    I know that spin is a type of intrinsic angular momentum. For electron spin is (1/2)ħ . But unit of (1/2)ħ is J.s, which is not the unit of angular momentum. Can you please explain this discrepancy?
  45. christang_1023

    Does the spin angular momentum count?

    Taking the Earth orbiting the sun as an example, when I consider the angular momentum of the Earth about the sun, should the spin angular momentum be counted? I'm confused that if it's counted, the spin angular momentum, Lcm=Icm×ωspin, is different from other angular momentum regarding the...
  46. M

    Calculating Clebsch–Gordan coefficients

    Homework Statement Prove that the Clebsch-Grodan coefficients (in the notation ##\langle j_1j_2m_1m_2|j_1j_2jm\rangle##) for the decomposition of the tensor product of spin ##l## and spin ##1/2## to spin ##l+1/2## are $$\left\langle l,\frac{1}{2},m\mp \frac{1}{2}, \pm \frac{1}{2} \Bigg\vert l...
  47. Edge5

    I Does spin orbit coupling cause the split in the energy level of the electron?

    Hi, As far as I understand spin orbit coupling is the interaction between proton of atom and electron. Proton's motion(from the frame of electron) around electron creates magnetic field. Hence electron experiences magnetic field. Does this magnetic field produces a Zeeman effect which cause...
  48. Edge5

    I Does a free electron have an orbital magnetic moment?

    I know that total magnetic moment of an electron (I am not sure if it is magnetic moment of electron or atom, please clarify this) is sum of magnetic moment caused by orbital motion and spin angular momentum. So, Total magnetic moment = Orbital magnetic moment + spin magnetic moment Do I have...
  49. S

    I How Would Electron Entanglement Affect Photon Emission

    Suppose you have a pair of electrons in the same quantum state, and are thus spin entangled, and they absorb a pair of photons and release them at the same time. How would this affect the photons? Would the photons be entangled? Would it affect the photon spin, and if so, how would it affect the...
  50. Edge5

    I How can electrons have the same spin in triplet state?

    Hello, I don't understand how can electrons in triplet state can have the same value of spin? Shouldn't the spins be different because two fermions can't have the same state? The following picture explain my question in more detail.
Back
Top