MHB 072 is Q(theta) a linear transformation from R^2 to itself.

Click For Summary
SUMMARY

The discussion centers on the linear transformation represented by the matrix $Q(\theta) = \begin{pmatrix} \cos{\theta} & -\sin{\theta} \\ \sin{\theta} & \cos{\theta} \end{pmatrix}$, which operates on the vector space R². Participants confirm that a transformation is linear if it satisfies the properties of additivity and homogeneity. The matrix $Q(\theta)$ meets these criteria, demonstrating that it is indeed a linear transformation from R² to itself. The conversation highlights the importance of understanding linear transformations in linear algebra.

PREREQUISITES
  • Understanding of linear transformations
  • Familiarity with matrix multiplication
  • Basic knowledge of trigonometric functions
  • Concept of vector spaces
NEXT STEPS
  • Study the properties of linear transformations in depth
  • Learn about matrix representations of transformations
  • Explore the geometric interpretation of rotations in R²
  • Investigate the implications of linear transformations in higher dimensions
USEFUL FOR

Students of linear algebra, mathematicians, and anyone interested in understanding the properties and applications of linear transformations in vector spaces.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
if $Q(\theta)$ is

$\left[\begin{array}{rr}
\cos{\theta}&- \sin{\theta}\\
\sin{\theta}&\cos{\theta}
\end{array}\right]$

how is $Q(\theta)$ is a linear transformation from R^2 to itself.

ok I really didn't know a proper answer to this question but presume we would need to look at the unit circle

not sure if this helps

Screenshot 2021-03-13 1.27.12 PM.png
 
Last edited by a moderator:
Physics news on Phys.org
Ok thanks
I usually don't get much replies on these linear algebra posts
 
karush said:
Ok thanks
I usually don't get much replies on these linear algebra posts

I'd help out, but it's been since my sophomore year in school (1973) since I've taken a course in Linear Algebra ... except for the very basic stuff, I haven't used it so I've "losed" it.
 
Better is to understand what "linear transformation" means! ANY transformation that can be written as a matrix multiplication is linear!

A transformation, L, on a vector space is "linear" if and only if
L(u+ v)= Lu+ Lv, for any vectors u and v, and
L(au)= aLu, for any vector u and scalar, a.

Here if $u= \begin{pmatrix}x \\ y \end{pmatrix}$ and $v= \begin{pmatrix} a \\ b\end{pmatrix}$, $L(u+ v)= \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatrix}x+ a \\ y+ b\end{pmatrix}= \begin{pmatrix}(x+ a)cos(\theta)- (y+ b)sin(\theta) \\ (x+ a)sin(\theta)+ (y+ b)cos(\theta)\end{pmatrix}$.

While $Lu+ Lv= \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatrix}x \\ y \end{pmatrix}+ \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatrix} a \\ b \end{pmatrix}= \begin{pmatrix} xcos(\theta)- ysin(\theta) \\ xsin(\theta)+ y cos(\theta)\end{pmatrix}+ \begin{pmatrix} acos(\theta)- bsin(\theta) \\ asin(\theta)+ bcos(\theta)\end{pmatrix}= \begin{pmatrix}(x+ a)cos(\theta)- (y+ b)sin(\theta) \\ (x+ a)sin(\theta)+ (y+ b)cos(\theta)\end{pmatrix}$.

And $L(au)= \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatri
https://mathhelpboards.com/forums/-/create-thread
072 is Q(theta) is a linear transformation from R^2 to itself.
  • Thread starterkarush
  • Start datehttps://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/
https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/#post-124753https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/watch
https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/post-124753
  • Thread starter
  • New
  • https://mathhelpboards.com/posts/124753/bookmark
  • https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/post-124753
https://mathhelpboards.com/data/avatars/s/0/55.jpg?1588030209
karush
Well-known member

Jan 31, 2012 2,838
if Q(θ)Q(θ) is

[cosθsinθ−sinθcosθ][cos⁡θ−sin⁡θsin⁡θcos⁡θ]

how is Q(θ)Q(θ) is a linear transformation from R^2 to itself.

ok I really didn't know a proper answer to this question but presume we would need to look at the unit circle

not sure if this helps
screenshot-2021-03-13-1-27-12-pm-png.gif


Last edited by a moderator: Today at 12:07 AM
https://mathhelpboards.com/posts/124753/react?reaction_id=1 https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/reply?quote=124753 https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/reply?quote=124753
https://mathhelpboards.com/posts/124753/report

x}ax \\ ay \end{pmatrix}= \begin{pmatrix}ax coz
 
skeeter said:
I'd help out, but it's been since my sophomore year in school (1973) since I've taken a course in Linear Algebra ... except for the very basic stuff, I haven't used it so I've "losed" it.

wow... my senior year was 1970 but my highest level in math was algebra II which today is much more advanced
2021_03_07_16.48.50.jpg
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K