MHB 072 is Q(theta) a linear transformation from R^2 to itself.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
if $Q(\theta)$ is

$\left[\begin{array}{rr}
\cos{\theta}&- \sin{\theta}\\
\sin{\theta}&\cos{\theta}
\end{array}\right]$

how is $Q(\theta)$ is a linear transformation from R^2 to itself.

ok I really didn't know a proper answer to this question but presume we would need to look at the unit circle

not sure if this helps

Screenshot 2021-03-13 1.27.12 PM.png
 
Last edited by a moderator:
Physics news on Phys.org
Ok thanks
I usually don't get much replies on these linear algebra posts
 
karush said:
Ok thanks
I usually don't get much replies on these linear algebra posts

I'd help out, but it's been since my sophomore year in school (1973) since I've taken a course in Linear Algebra ... except for the very basic stuff, I haven't used it so I've "losed" it.
 
Better is to understand what "linear transformation" means! ANY transformation that can be written as a matrix multiplication is linear!

A transformation, L, on a vector space is "linear" if and only if
L(u+ v)= Lu+ Lv, for any vectors u and v, and
L(au)= aLu, for any vector u and scalar, a.

Here if $u= \begin{pmatrix}x \\ y \end{pmatrix}$ and $v= \begin{pmatrix} a \\ b\end{pmatrix}$, $L(u+ v)= \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatrix}x+ a \\ y+ b\end{pmatrix}= \begin{pmatrix}(x+ a)cos(\theta)- (y+ b)sin(\theta) \\ (x+ a)sin(\theta)+ (y+ b)cos(\theta)\end{pmatrix}$.

While $Lu+ Lv= \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatrix}x \\ y \end{pmatrix}+ \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatrix} a \\ b \end{pmatrix}= \begin{pmatrix} xcos(\theta)- ysin(\theta) \\ xsin(\theta)+ y cos(\theta)\end{pmatrix}+ \begin{pmatrix} acos(\theta)- bsin(\theta) \\ asin(\theta)+ bcos(\theta)\end{pmatrix}= \begin{pmatrix}(x+ a)cos(\theta)- (y+ b)sin(\theta) \\ (x+ a)sin(\theta)+ (y+ b)cos(\theta)\end{pmatrix}$.

And $L(au)= \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatri
https://mathhelpboards.com/forums/-/create-thread
072 is Q(theta) is a linear transformation from R^2 to itself.
  • Thread starterkarush
  • Start datehttps://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/
https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/#post-124753https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/watch
https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/post-124753
  • Thread starter
  • New
  • https://mathhelpboards.com/posts/124753/bookmark
  • https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/post-124753
https://mathhelpboards.com/data/avatars/s/0/55.jpg?1588030209
karush
Well-known member

Jan 31, 2012 2,838
if Q(θ)Q(θ) is

[cosθsinθ−sinθcosθ][cos⁡θ−sin⁡θsin⁡θcos⁡θ]

how is Q(θ)Q(θ) is a linear transformation from R^2 to itself.

ok I really didn't know a proper answer to this question but presume we would need to look at the unit circle

not sure if this helps
screenshot-2021-03-13-1-27-12-pm-png.gif


Last edited by a moderator: Today at 12:07 AM
https://mathhelpboards.com/posts/124753/react?reaction_id=1 https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/reply?quote=124753 https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/reply?quote=124753
https://mathhelpboards.com/posts/124753/report

x}ax \\ ay \end{pmatrix}= \begin{pmatrix}ax coz
 
skeeter said:
I'd help out, but it's been since my sophomore year in school (1973) since I've taken a course in Linear Algebra ... except for the very basic stuff, I haven't used it so I've "losed" it.

wow... my senior year was 1970 but my highest level in math was algebra II which today is much more advanced
2021_03_07_16.48.50.jpg
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Back
Top