072 is Q(theta) a linear transformation from R^2 to itself.

Click For Summary

Discussion Overview

The discussion revolves around whether the transformation $Q(\theta)$, represented by a rotation matrix, qualifies as a linear transformation from R² to itself. Participants explore the definition of linear transformations and consider the implications of the matrix representation.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant presents the matrix form of $Q(\theta)$ and questions its status as a linear transformation, suggesting a connection to the unit circle.
  • Another participant emphasizes the definition of linear transformations, stating that any transformation expressible as a matrix multiplication is linear, and provides a detailed breakdown of the conditions for linearity.
  • Some participants express their lack of recent experience with linear algebra, indicating a potential gap in understanding or confidence in discussing the topic.

Areas of Agreement / Disagreement

There is no consensus on the question of whether $Q(\theta)$ is a linear transformation, as participants present differing levels of understanding and experience with the topic.

Contextual Notes

Some participants mention their long absence from formal study in linear algebra, which may affect their contributions and understanding of the discussion.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
if $Q(\theta)$ is

$\left[\begin{array}{rr}
\cos{\theta}&- \sin{\theta}\\
\sin{\theta}&\cos{\theta}
\end{array}\right]$

how is $Q(\theta)$ is a linear transformation from R^2 to itself.

ok I really didn't know a proper answer to this question but presume we would need to look at the unit circle

not sure if this helps

Screenshot 2021-03-13 1.27.12 PM.png
 
Last edited by a moderator:
Physics news on Phys.org
Ok thanks
I usually don't get much replies on these linear algebra posts
 
karush said:
Ok thanks
I usually don't get much replies on these linear algebra posts

I'd help out, but it's been since my sophomore year in school (1973) since I've taken a course in Linear Algebra ... except for the very basic stuff, I haven't used it so I've "losed" it.
 
Better is to understand what "linear transformation" means! ANY transformation that can be written as a matrix multiplication is linear!

A transformation, L, on a vector space is "linear" if and only if
L(u+ v)= Lu+ Lv, for any vectors u and v, and
L(au)= aLu, for any vector u and scalar, a.

Here if $u= \begin{pmatrix}x \\ y \end{pmatrix}$ and $v= \begin{pmatrix} a \\ b\end{pmatrix}$, $L(u+ v)= \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatrix}x+ a \\ y+ b\end{pmatrix}= \begin{pmatrix}(x+ a)cos(\theta)- (y+ b)sin(\theta) \\ (x+ a)sin(\theta)+ (y+ b)cos(\theta)\end{pmatrix}$.

While $Lu+ Lv= \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatrix}x \\ y \end{pmatrix}+ \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatrix} a \\ b \end{pmatrix}= \begin{pmatrix} xcos(\theta)- ysin(\theta) \\ xsin(\theta)+ y cos(\theta)\end{pmatrix}+ \begin{pmatrix} acos(\theta)- bsin(\theta) \\ asin(\theta)+ bcos(\theta)\end{pmatrix}= \begin{pmatrix}(x+ a)cos(\theta)- (y+ b)sin(\theta) \\ (x+ a)sin(\theta)+ (y+ b)cos(\theta)\end{pmatrix}$.

And $L(au)= \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta)\end{pmatrix}\begin{pmatri
https://mathhelpboards.com/forums/-/create-thread
072 is Q(theta) is a linear transformation from R^2 to itself.
  • Thread starterkarush
  • Start datehttps://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/
https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/#post-124753https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/watch
https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/post-124753
  • Thread starter
  • New
  • https://mathhelpboards.com/posts/124753/bookmark
  • https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/post-124753
https://mathhelpboards.com/data/avatars/s/0/55.jpg?1588030209
karush
Well-known member

Jan 31, 2012 2,838
if Q(θ)Q(θ) is

[cosθsinθ−sinθcosθ][cos⁡θ−sin⁡θsin⁡θcos⁡θ]

how is Q(θ)Q(θ) is a linear transformation from R^2 to itself.

ok I really didn't know a proper answer to this question but presume we would need to look at the unit circle

not sure if this helps
screenshot-2021-03-13-1-27-12-pm-png.gif


Last edited by a moderator: Today at 12:07 AM
https://mathhelpboards.com/posts/124753/react?reaction_id=1 https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/reply?quote=124753 https://mathhelpboards.com/threads/072-is-q-theta-is-a-linear-transformation-from-r-2-to-itself.28497/reply?quote=124753
https://mathhelpboards.com/posts/124753/report

x}ax \\ ay \end{pmatrix}= \begin{pmatrix}ax coz
 
skeeter said:
I'd help out, but it's been since my sophomore year in school (1973) since I've taken a course in Linear Algebra ... except for the very basic stuff, I haven't used it so I've "losed" it.

wow... my senior year was 1970 but my highest level in math was algebra II which today is much more advanced
2021_03_07_16.48.50.jpg
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K