EugP
- 104
- 0
Homework Statement
I seem to not fully understand how to find particular solutions. I'm having a hard time guessing what the solutions maybe. I'll explain as I write out the problem.
y''' - 2y'' + y' = te^t + t^2 + 4, find the general solution.
Homework Equations
Z(r) = r^3 - 2r^2 + r
The Attempt at a Solution
Found the homogenous solution:
r^3 - 2r^2 + r = 0
r (r - 1)^2 = 0
r_1 = 0, \ r_2 = 1, \ r_3 = 1
y = C_1 + C_2e^t + C_3te^t
Now I'm trying to find the particular solutions.
For te^t, I assume:
y_1 = At^2e^t
y_1' = Ae^t (t^2 + 2t)
y_1'' = Ae^t (t^2 + 4t + 2)
y_1''' = Ae^t (t^2 + 6t + 6)
Now I plug back in:
Ae^t (t^2 + 6t + 6) -2Ae^t (t^2 + 4t + 2) + Ae^t (t^2 + 2t) = te^t
2A = t
A = \frac{t}{2}
y_1 = \frac{1}{2}t^3e^t
Now, for t^2, I assumed y_2 = Bt^3, but in an example in the book that had t^2, it said that y_2 = t^2 (A_1t^2 + A_2t + A_3). I don't understand how they got that.
Also, for the constant 4, I assumed y_3 = Ct. Is this correct?
I don't fully understand how I am supposed to go about guessing the solutions. There must be some guidelines, but we weren't taught what they are. If someone could help me with this, it would be greatly appreciated.