2nd order differential - particular solution

W3bbo
Messages
31
Reaction score
0
[SOLVED] 2nd order differential - particular solution

Homework Statement



a) Find the general solution of the differential equation:

\[2\frac{{d^2 x}}{{dt^2 }} + 5\frac{{dx}}{{dt}} + 2x = 2t + 9\]<br />

b) Find the particular solution of this differential equation for which:

\[x = 3{\rm{ and }}\frac{{dy}}{{dx}} = - 1{\rm{ when }}t = 0\]

c) The particular solution in part b) is used to model the motion of a particle P on the x-axis. At time t seconds (t>=0), P is x metres from the origin O. Show that the minimum distance between O and P is

\[{\textstyle{1 \over 2}}\left( {5 + {\mathop{\rm Ln}\nolimits} \left( 2 \right)} \right)\]

Homework Equations



N/A

The Attempt at a Solution



<br /> \[<br /> \begin{array}{c}<br /> 2\frac{{d^2 x}}{{dt^2 }} + 5\frac{{dx}}{{dt}} + 2x = 2t + 9 \\ <br /> \\ <br /> x = e^{mt} ;\frac{{dx}}{{dt}} = te^{mt} ;\frac{{d^2 x}}{{dt^2 }} = t^2 e^{mt} \\ <br /> \\ <br /> 2t^2 e^{mt} + 5te^{mt} + 2e^{mt} = 0 \\ <br /> e^{mt} \left( {2t^2 + 5t + 2} \right) = 0 \\ <br /> t_1 = - {\textstyle{1 \over 2}} \\ <br /> t_2 = - 2 \\ <br /> \end{array}<br /> \]

Complimentary:
Ae^{ - 2t} + Be^{ - {\textstyle{1 \over 2}}t}

Particular:
<br /> $\begin{gathered}<br /> x = at + b;\frac{{dx}}<br /> {{dt}} = a;\frac{{d^2 x}}<br /> {{dt^2 }} = 0 \\ <br /> \\ <br /> 2\left( 0 \right) + 5\left( a \right) + 2\left( {at + b} \right) = 2t + 9 \\ <br /> 5a + 2at + 2b = \\ <br /> 2b + a\left( {5 + 2t} \right) = \\ <br /> 2at = 2t \\ <br /> a = 1 \\ <br /> \\ <br /> 5a + 2b = 9 \\ <br /> b = 2 \\ <br /> \therefore \\ <br /> x = Ae^{ - 2t} + Be^{ - \tfrac{1}<br /> {2}t} + t + 2 \\ <br /> \end{gathered} $<br /> <br />


That's my solution to Part A, Mathematica agrees with me when I run:

Code:
In[1]:= DSolve[ 2y''[x] + 5y'[x] + 2y[x] == 2x+9, y[x], x  ]
Out[1]= y[x] -> 2 + x + e^(-x/2) * C[1] + e^(-2x) * C[2]

(Note y substituted for x, x substitued for t, C[1] for B, and C[2] for A.)

For part B, I got:

<br /> $\begin{gathered}<br /> x = Ae^{ - 2t} + Be^{ - \tfrac{1}<br /> {2}t} + t + 2 \\ <br /> 3 = Ae^{ - 2\left( 0 \right)} + Be^{ - \tfrac{1}<br /> {2}\left( 0 \right)} + 0 + 2 \\ <br /> 3 = A + B + 2 \\ <br /> 1 = A + B \\ <br /> \\ <br /> \frac{{dx}}<br /> {{dt}} = - 2Ae^{ - 2t} - \tfrac{1}<br /> {2}Be^{ - \tfrac{1}<br /> {2}t} + 1 \\ <br /> - 1 = - 2A - \tfrac{1}<br /> {2}B + 1 \\ <br /> \\ <br /> A = 1 - B \\ <br /> - 1 = - 2\left( {1 - B} \right) - \tfrac{1}<br /> {2}B + 1 \\ <br /> 0 = B \\ <br /> A = 1 \\ <br /> \\ <br /> \therefore \\ <br /> x = e^{ - 2t} + t + 2 \\ <br /> \end{gathered} $<br />

However this doesn't work with the last question (C), since the minimum of that function isn't located at ~2.84

Any ideas where I've gone wrong?

Thanks!
 
Last edited:
Physics news on Phys.org
Find dx/dt and equate to zero and find the value for t that makes x a minimum(I got\frac{1}{2}ln2).
sub that value into the Particular solution and it should work out.
 
Last edited:
W3bbo said:

Homework Statement



a) Find the general solution of the differential equation:

\[2\frac{{d^2 x}}{{dt^2 }} + 5\frac{{dx}}{{dt}} + 2x = 2t + 9\]<br />

b) Find the particular solution of this differential equation for which:

\[x = 3{\rm{ and }}\frac{{dy}}{{dx}} = - 1{\rm{ when }}t = 0\]
I assume you mean dx/dt, not dy/dx.

c) The particular solution in part b) is used to model the motion of a particle P on the x-axis. At time t seconds (t>=0), P is x metres from the origin O. Show that the minimum distance between O and P is

\[{\textstyle{1 \over 2}}\left( {5 + {\mathop{\rm Ln}\nolimits} \left( 2 \right)} \right)\]

Homework Equations



N/A

The Attempt at a Solution



<br /> \[<br /> \begin{array}{c}<br /> 2\frac{{d^2 x}}{{dt^2 }} + 5\frac{{dx}}{{dt}} + 2x = 2t + 9 \\ <br /> \\ <br /> x = e^{mt} ;\frac{{dx}}{{dt}} = te^{mt} ;\frac{{d^2 x}}{{dt^2 }} = t^2 e^{mt} \end{array}
No, dx/dt= m e^{mt} and d^2x/dt^2= m^2 e^{mt}<br /> [/quote]\begin{array} 2t^2 e^{mt} + 5te^{mt} + 2e^{mt} = 0 \\ &lt;br /&gt; e^{mt} \left( {2t^2 + 5t + 2} \right) = 0 \\ &lt;br /&gt; t_1 = - {\textstyle{1 \over 2}} \\ &lt;br /&gt; t_2 = - 2 \\ &lt;br /&gt; \end{array}&lt;br /&gt; \]<br /> t is your variable- you trying to find values for m, the coeficient in the exponent.<br /> <br /> <blockquote data-attributes="" data-quote="" data-source="" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> Complimentary:<br /> Ae^{ - 2t} + Be^{ - {\textstyle{1 \over 2}}t}<br /> <br /> Particular:<br /> &lt;br /&gt; $\begin{gathered}&lt;br /&gt; x = at + b;\frac{{dx}}&lt;br /&gt; {{dt}} = a;\frac{{d^2 x}}&lt;br /&gt; {{dt^2 }} = 0 \\ &lt;br /&gt; \\ &lt;br /&gt; 2\left( 0 \right) + 5\left( a \right) + 2\left( {at + b} \right) = 2t + 9 \\ &lt;br /&gt; 5a + 2at + 2b = \\ &lt;br /&gt; 2b + a\left( {5 + 2t} \right) = \\ &lt;br /&gt; 2at = 2t \\ \end{gathered} </div> </div> </blockquote>
<br /> I&#039;m not sure why you would write it like that. 2at+ (5a+ 2b)= 2t+ 9 is simpler.<br /> <br /> \begin{gathered} a = 1 \\ &lt;br /&gt; \\ &lt;br /&gt; 5a + 2b = 9 \\ &lt;br /&gt; b = 2 \\ &lt;br /&gt; \therefore \\ &lt;br /&gt; x = Ae^{ - 2t} + Be^{ - \tfrac{1}&lt;br /&gt; {2}t} + t + 2 \\ &lt;br /&gt; \end{gathered} $&lt;br /&gt; &lt;br /&gt;<br /> <br /> <br /> That&#039;s my solution to Part A, Mathematica agrees with me when I run:<br /> <br /> <div class="bbCodeBlock bbCodeBlock--screenLimited bbCodeBlock--code"> <div class="bbCodeBlock-title"> <i class="fa--xf fal fa-code "><svg xmlns="http://www.w3.org/2000/svg" role="img" aria-hidden="true" ><use href="/data/local/icons/light.svg?v=1756418028#code"></use></svg></i> Code: </div> <div class="bbCodeBlock-content" dir="ltr"> <pre class="bbCodeCode" dir="ltr" data-xf-init="code-block" data-lang=""><code>In[1]:= DSolve[ 2y&#039;&#039;[x] + 5y&#039;[x] + 2y[x] == 2x+9, y[x], x ] Out[1]= y[x] -&gt; 2 + x + e^(-x/2) * C[1] + e^(-2x) * C[2]</code></pre> </div> </div><br /> (Note y substituted for x, x substitued for t, C[1] for B, and C[2] for A.)
<br /> Okay, so that is correct (since after finding &quot;t<sub>1</sub>&quot; and &quot;t<sub>2</sub>&quot; you actually used them for &quot;m&quot;).<br /> <br /> <blockquote data-attributes="" data-quote="" data-source="" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> For part B, I got:<br /> <br /> &lt;br /&gt; $\begin{gathered}&lt;br /&gt; x = Ae^{ - 2t} + Be^{ - \tfrac{1}&lt;br /&gt; {2}t} + t + 2 \\ &lt;br /&gt; 3 = Ae^{ - 2\left( 0 \right)} + Be^{ - \tfrac{1}&lt;br /&gt; {2}\left( 0 \right)} + 0 + 2 \\ &lt;br /&gt; 3 = A + B + 2 \\ &lt;br /&gt; 1 = A + B \\ &lt;br /&gt; \\ &lt;br /&gt; \frac{{dx}}&lt;br /&gt; {{dt}} = - 2Ae^{ - 2t} - \tfrac{1}&lt;br /&gt; {2}Be^{ - \tfrac{1}&lt;br /&gt; {2}t} + 1 \\ &lt;br /&gt; - 1 = - 2A - \tfrac{1}&lt;br /&gt; {2}B + 1 \\ &lt;br /&gt; \\ &lt;br /&gt; A = 1 - B \\ &lt;br /&gt; - 1 = - 2\left( {1 - B} \right) - \tfrac{1}&lt;br /&gt; {2}B + 1 \\ &lt;br /&gt; 0 = B \\ &lt;br /&gt; A = 1 \\ &lt;br /&gt; \\ &lt;br /&gt; \therefore \\ &lt;br /&gt; x = e^{ - 2t} + t + 2 \\ &lt;br /&gt; \end{gathered} $&lt;br /&gt; <blockquote data-attributes="" data-quote="" data-source="" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> Yes, that is correct.<br /> <br /> <blockquote data-attributes="" data-quote="" data-source="" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> However this doesn&#039;t work with the last question (C), since the minimum of that function isn&#039;t located at ~2.84<br /> <br /> Any ideas where I&#039;ve gone wrong?<br /> <br /> Thanks! </div> </div> </blockquote> Unfortunately, you have left out the crucial calculations- why you say that doesn&#039;t work.<br /> With x= e^{-2t}+ t+ 2. dx/dt= -2e^{-2t}+ 1 and that equals 0 when e^{-2t)= 1/2 so t= ln(2)/2. Putting that into x= e^{-2t}+ t+ 2, we have x= 1/2+ ln(2)/2+ 2= 5/2+ ln(2)/2, exactly as given. </div> </div> </blockquote> </div> </div> </blockquote>
 
HallsofIvy said:
Unfortunately, you have left out the crucial calculations- why you say that doesn't work.

My apologies, the way the question uses x for the function and t for the arg threw me off and I confused the derivative with the original equations.

Thing is, the minimum point on the plot is below zero, but isn't a negative distance still a positive displacement? So the minimum points would be zero and around 0.75. So isn't the question a little wrong in this respect?

But yours (and now my) answers are in line with the answer given, so thanks.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top