3 dimensional cube finding an angle

  • Thread starter Thread starter Toranc3
  • Start date Start date
  • Tags Tags
    Angle Cube
AI Thread Summary
To find the angle of intersection between the planes formed by triangles EBC and ECD, it's essential to calculate the normal vectors of these planes. The discussion suggests using the scalar triple product, which involves the cross product and dot product of the vectors. By substituting the appropriate values into the equation, the angle of intersection can be determined. One participant calculated the angle to be approximately 55.24 degrees. This method provides a systematic approach to solving the problem.
Toranc3
Messages
189
Reaction score
0

Homework Statement


A cube is positioned with its vertices at the following points:

A=(0,0,0) C=(1,1,0) E=(0,0,1) G=(1,1,1)

B=(1,0,0) D=(0,1,0) F=(1,0,1) H=(0,1,1)

What is the angle of intersection of the planes formed by the triangles EBC and ECD


Homework Equations



AB=ABcosθ

Ab=Absinθ

The Attempt at a Solution




I am stuck on this one. I drew a picture but I can seem to figure anything out. Could somebody give me a hint?
 
Physics news on Phys.org
To find the angle, you need to find the normal vectors to the planes.
 
hi. you can solve by using scalar triple product * = cross product . = dot product
[(A*B).C] = |A| |B| sin 90 |c| cos(θ) here theta angle made by intersection of planes
if substitute all values you will get angle of intersection of two planes
I got 55.24 degree
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top