Computing the Modular Group of the Torus

  • Thread starter Thread starter electroweak
  • Start date Start date
  • Tags Tags
    Group Torus
electroweak
Messages
43
Reaction score
1
How does one compute the modular group of the torus? I see how Dehn twists generate the modular group, and I see how Dehn twists are really automorphisms of isotopy classes. Based on this, it seems that the modular group should be Aut(pi1(T^2))=Aut(Z^2)=GL(2,Z). But I've read that the modular group is in fact SL(2,Z). How does this work? I may have something to do with orientation-preservation, but I haven't been able to flesh this out. Thanks in advance.
 
Physics news on Phys.org
This really isn't my area, but let me give it a shot.

On the one hand, every element in GL(2,Z)=Aut(Z^2) gives us an automorphism of R^2 that stabilizes Z^2 (here I'm using the standard basis for everything), hence descends to an automorphism of the torus R^2/Z^2. On the other hand, every automorphism of R^2/Z^2 induces an automorphism of pi_1(R^2/Z^2) = Z^2 (this equality is really a specific isomorphism). It seems to me everything here is compatible, and that it shouldn't be too hard to conclude that the isotopy classes of automorphisms (=self-diffeomorphisms?) of R^2/Z^2 lie in one-to-one correspondence with elements of GL(2,Z).

The final observation to make is that an automorphism of R^2/Z^2 preserves the orientation defined by the basis {(1,0), (0,1)} for the lattice iff the corresponding automorphism in GL(2,Z) preserves the orientation in R^2 defined by the basis {(1,0),(0,1)} - i.e., iff the corresponding automorphism in GL(2,Z) has positive determinant <=> has determinant 1 (since everything in GL(2,Z) has determinant +/- 1).

So if by "modular group" you mean group of isotopy classes of orientation-preserving automorphisms, then I believe the above comments show why this group is SL(2,Z).
 
Last edited:
Cool. That makes sense. Actually, I just read that GL(2,Z) is called the "extended modular group".
 
Hello! There is a simple line in the textbook. If ##S## is a manifold, an injectively immersed submanifold ##M## of ##S## is embedded if and only if ##M## is locally closed in ##S##. Recall the definition. M is locally closed if for each point ##x\in M## there open ##U\subset S## such that ##M\cap U## is closed in ##U##. Embedding to injective immesion is simple. The opposite direction is hard. Suppose I have ##N## as source manifold and ##f:N\rightarrow S## is the injective...
Back
Top