The Effect of Temperature on Buoyant Forces

AI Thread Summary
The discussion centers on how temperature affects buoyant forces in a hot air balloon designed to carry four 100-kg passengers. It is established that warmer air is less dense than cooler air, leading to a reduced buoyant force when the ambient temperature rises. The initial assumption that the balloon could carry the same weight under warmer conditions is challenged, as the decreased density of the surrounding air means the balloon will not achieve its maximum volume and will carry less weight. The conversation clarifies that the buoyant force is dependent on the difference in density between the heated air inside the balloon and the ambient air, which decreases on warmer days. Ultimately, the conclusion is that the balloon's carrying capacity is diminished in higher temperatures.
karamsoft
Messages
4
Reaction score
0
Hi, I came across this question in a physics review pamphlet:

Homework Statement



A balloon for a county fair is designed to carry four
100-kg passengers when it is expanded to its maximum
volume. The designers assumed the balloon would
operate in ordinary spring temperatures. If, on the day
of the fair, the temperature reaches a record-breaking
maximum: (air density: 1.2)
A) the balloon will not be able to achieve its maximum
volume.
B) more sandbags will be needed for proper operation of the
balloon.
C) the total weight the balloon is able to carry will be
reduced.
D) once in flight, the balloon cannot be lowered until the
ambient temperature drops.


Homework Equations



FB,net = (1.2— air heated)x volume of balloon
FG= mg

The Attempt at a Solution



The book says the answer is C because Warmer air is less dense than cooler air. Less dense air will give a smaller buoyant force and the balloon will be able to carry less weight.

However, using the equation FB,net = (1.2— air heated)x volume of balloon
it is obvious that the less dense air will result in a larger difference between the the densities (of the cold and hot air) which will ultimately result in a larger buoyant force. Hence, we will need a larger downward force to compensate (force of gravity) by adding sandbags (so answer choice B, which is the opposite of C).

Thanks,
 
Physics news on Phys.org
karamsoft said:
However, using the equation FB,net = (1.2— air heated)x volume of balloon
it is obvious that the less dense air will result in a larger difference between the the densities (of the cold and hot air)
How so?
The 1.2 is the density of the 'unusually warm' air, yes? So was the expected density more or less than 1.2? Roughly what density might the air in the balloon have? Is that altered by the unusually warm day?
You might find the table here useful: http://en.wikipedia.org/wiki/Density#Air
 
  • Like
Likes 1 person
haruspex said:
How so?
The 1.2 is the density of the 'unusually warm' air, yes? So was the expected density more or less than 1.2? Roughly what density might the air in the balloon have? Is that altered by the unusually warm day?
You might find the table here useful: http://en.wikipedia.org/wiki/Density#Air

Thank you haruspex for your response,

I see what you mean. I was fixated on 1.2 kg/m3 as a constant value. Now I think about it, it is the other way around (that is the air heated inside the balloon will have the same density on whatever day since the temperature given by the fire is the same, right?). So on a warm day the density of the "ambient temperature" air will be less than 1.2 and the difference between the variables (densities) will be less and so the buoyant force will decrease as a result..
Awesome thanks!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top