A Critical Value for Transition in Differential Equations

  • Thread starter Thread starter ehabmozart
  • Start date Start date
  • Tags Tags
    Value
ehabmozart
Messages
212
Reaction score
0

Homework Statement



Q) ty' + 2y = (sin t)/t, y(−π/2) = a, t < 0 . Let a0 be
the value of a for which the transition from one type of behavior to another occurs.Solve the IVP and find the critical value a0 exactly.

Homework Equations



DE

The Attempt at a Solution



I can easily manage to get the general solution. After a series of work, I ended with y= ∏2a/4t2 - cost/t2 . My biggest problem here is getting a0, the critical value. I mean what is exactly the critical value. In this case I cannot equate y' to be zero. I want a general explanation on what the critical value means!?
 
Last edited:
Physics news on Phys.org
Consider ##\lim\limits_{t\to 0}y(t)## in dependence on ##a##
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top