A formula of prime numbers for interval (q; (q+1)^2)

Victor Sorokine
Messages
70
Reaction score
0
A formula of prime numbers for interval (q; (q+1)^2),
where q is prime number.

Let:
Q_k – the multitude of first k prime numbers to some extent:
Q_k = (q_0 = 1^0, q_1 = 2^n1, q_2 = 3^n2, q_3 = 5^n3, q_4 = 7^n4, … q_k = u^nk)
(here the expression «_i» signifies lower index, and «^ni» signifies exponent);
M_s – the product of s elements to his extent;
M_t – the product of the rest t = k – s elements.
And now
ALL numbers q = M_s – M_t ( q is function of the combination s and of the exponents n0, n1, … nk) in the interval (q_k ; (q_k)^2) [and in the interval (q_k ; (q_k+1)^2)] are PRIME
(let Q – the multitude of the q, where q_k < q < (q_k+1)^2).

Example:
Q_4 :
q_0 = 1^0, q_1 = 2^n1, q_2 = 3^n2, q_3 = 5^n3, q_4 = 7^n4.
Interval:
7 < q < 9^2 = 81 [< 121].

Q :
11 = 3 x 7 – 2 x 5,
13 = 2^2 x 7 – 3 x 5,
17 = 5 x 7 – 2 x 3^2,
19 = 7^2 – 2 x 3 x 5,
23 = 2 x 3 x 5 – 7,
29 = 5 x 7 – 2 x 3,
31 = 3^2 x 5 – 2 x 7,
37 = 2 x 3 x 7 – 5,
41 = 3 x 5 x 7 – 2^6,
43 = 2 x 5 x 7 – 3^3,
47 = 3 x 5^2 – 2^2 x 7,
53 = 3^2 x 7 – 2 x 5,
59 = 2^4 x 5 – 3 x 7,
61 = 3 x 5^2 – 2 x 7.
67 = 2^4 x 7– 3^2 x 5
71 = 2^3 x 3 x 5 – 7^2,
73 = 3 x 5 x 7 – 2^5,
79 = 2^2 x 3 x 7 – 5,
[and also:
83 = 5^3 – 2 x 3 x 7,
89 = 3 x 5 x 7 – 2^4,
97 = 3 x 5 x 7 – 2^3,
101 = 3 x 5 x 7 – 2^2,
103 = 3 x 5 x 7 – 2,
107 = 3^3 x 5 – 2^2 x 7,
109 = 3^3 x 7 – 2^4 x 5,
113 = 2^2 x 5 x 7 – 3^3,
And only further the formula makes a transient error:
2 x 3^2 x 7 – 5= 121 = 11 х 11.]
Here min(q) = 11.

But now we can write out the multitude
Q_5 :
q_0 = 1^0, q_1 = 2^n1, q_2 = 3^n2, q_3 = 5^n3, q_4 = 7^n4, q_5 = 11^n5
and calculate the prime number in interval
11 < q < 13^2 = 144.
Etc…

In the interval (q_k ; (q_k+1)^2) the formula don't give the composite numbers.

Victor Sorokine

P.S. The fonction q_k+1 = F(q_k) will be done after the recognition of the proof FLT.
PP.S. Bewaring of aggressiveness some professional,
author does not take part in the discussion.
 
Physics news on Phys.org
I'm a professional mathematician and, beyond this post, I have no intention of taking part in any discussion. I will merely say I have no idea if that is good or bad in your opinon since I cannot understand what your PP.S. means. This is however in keeping with the rest of your post which also makes no sense at all.
 
you are trying to start another discussion of nonsense mathematics like you did with flt... great. NOT
 
Victor: your text is impenetrable. I am unable to read most of it.

As for your observation, it isn't new, and it is fairly trivial to prove that in the specified intervals, such formulae can only give prime numbers.

We've had someone come through this very forum presenting this observation (in a readable way), and with an interesting follow-up question.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top