Pengwuino
Gold Member
- 5,112
- 20
I have an odd problem here. I need to show that:
KE = \frac{{\frac{{\Delta \lambda }}{\lambda }}}{{1 + (\frac{{\Delta \lambda }}{\lambda })}}hf
I've basically derived KE = \frac{{hc}}{{\lambda _o }} - \frac{{hc}}{{\lambda '}} down to…
KE(\frac{{\lambda '}}{{\lambda _o ^2 }}) = (\frac{{\Delta \lambda }}{{\lambda _o }})hf
but I'm not sure how I can turn that \frac{{\lambda '}}{{\lambda _o ^2 }} into a 1 + (\frac{{\Delta \lambda }}{{\lambda _o }})
Can anyone help?
KE = \frac{{\frac{{\Delta \lambda }}{\lambda }}}{{1 + (\frac{{\Delta \lambda }}{\lambda })}}hf
I've basically derived KE = \frac{{hc}}{{\lambda _o }} - \frac{{hc}}{{\lambda '}} down to…
KE(\frac{{\lambda '}}{{\lambda _o ^2 }}) = (\frac{{\Delta \lambda }}{{\lambda _o }})hf
but I'm not sure how I can turn that \frac{{\lambda '}}{{\lambda _o ^2 }} into a 1 + (\frac{{\Delta \lambda }}{{\lambda _o }})
Can anyone help?
Last edited: