A magnetic induction question

schattenjaeger
Messages
176
Reaction score
0

Homework Statement


A square of edge a lies in the xy plane with the origin at its center. Find the value of the magnetic induction at any point on the z axis when a current I' circulates around the square.


Homework Equations


B=u/4pi * lineint[(I'*ds' x R)/R^3)]


The Attempt at a Solution



I guess you've got the 4 different sides of the square, I assumed by "circulating" it meant it goes around, so opposite sides the current is going opposite directions. The way I did this, let's say it's going around counter-clockwise, for the side on the right running parallel to the x-axis with the current traveling in the positive x direction...
(capital letters = unit vectors)
ds'=dx'X
R=-x'X-a/2Y+zZ
ds' X R = -(zY+a/2*Z)dx'

R^3 = (x'^2+a^2/4+z^2)^(3/2)

so when I integrate that, I'm just going to say k=uI'/4pi and...
-k{4a(zY+a/2Z)sqrt(2)/[sqrt(a^2+2z^2)*(a^2+4z^2)]}

is my approach even right? I carefully repeated that for all 4 sides and added them, but didn't get the right answer(I don't have the "answer" per se, rather just the value in the middle of the square, which I didn't get right)
 
Physics news on Phys.org
schattenjaeger said:

Homework Statement


A square of edge a lies in the xy plane with the origin at its center. Find the value of the magnetic induction at any point on the z axis when a current I' circulates around the square.


Homework Equations


B=u/4pi * lineint[(I'*ds' x R)/R^3)]


The Attempt at a Solution



I guess you've got the 4 different sides of the square, I assumed by "circulating" it meant it goes around, so opposite sides the current is going opposite directions. The way I did this, let's say it's going around counter-clockwise, for the side on the right running parallel to the x-axis with the current traveling in the positive x direction...
(capital letters = unit vectors)
ds'=dx'X
R=-x'X-a/2Y+zZ
ds' X R = -(zY+a/2*Z)dx'

R^3 = (x'^2+a^2/4+z^2)^(3/2)

so when I integrate that, I'm just going to say k=uI'/4pi and...
-k{4a(zY+a/2Z)sqrt(2)/[sqrt(a^2+2z^2)*(a^2+4z^2)]}

is my approach even right? I carefully repeated that for all 4 sides and added them, but didn't get the right answer(I don't have the "answer" per se, rather just the value in the middle of the square, which I didn't get right)

You are starting in the right place. I'm having a bit of trouble sorting out your substitutions, so I'm going to leave the work up to you. I did a similar problem recently, so I know what the integral looks like. You should have the equivalent of

B = \frac{{\mu _o IR}}{{4\pi }}\int_{ - a/2}^{a/2} {\frac{{ds}}{{\left( {R^2 + s^2 } \right)^{3/2} }}}

for each wire, where my R is the distance from the center of the wire to the point on the z axis where B is being calculated. R is independent of s. The integral gives you

B = \frac{{\mu _o I}}{{4\pi }} {\frac{a}{{R \sqrt {R^2 + \left( {a/2} \right)^2 } }}}
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top