TheSodesa
- 224
- 7
Homework Statement
Find the limit \lim_{(x,y)\to(2,2)}\frac{x^3-y^3}{x-y}
Homework Equations
\epsilon - \delta, baby:
If the limit L exists,
<br /> \forall \: \epsilon \: \exists \: \delta: 0 < \sqrt{(x-a)^2+(y-b)^2} < \delta \rightarrow |f(x,y)-L| < \epsilon<br />
The Attempt at a Solution
By approaching the point (2,2) along the lines x=2 and y=2 I managed to figure out that the limit is likely 12. Now I just need to prove it, and I'm stuck.
Now
0 < \sqrt{(x-2)^2+(y-2)^2} < \delta \leftrightarrow (x-2)^2+(y-2)^2 < \delta^2
and using long division
x^3-y^3 = (x-y)(x^2+xy+y^2) \rightarrow \frac{x^3-y^3}{x-y}=(x^2+xy+y^2)
I tried deriving the expression for delta from epsilon like this:
<br /> \begin{split}<br /> |(x^2+xy+y^2)-12| &= |x^2-4x+4+y^2-4x+4+xy+4x+4y-20|\\<br /> &\leq |x^2-4x+4+y^2-4x+4|+|xy+4x+4y-20|\\<br /> &\leq \delta^2 + |xy+4x+4y-20|<br /> \end{split}<br />
Almost there, except I'm stuck with that pesky |xy+4x+4y-20|, that I don't know how to get rid of. Am I taking the wrong approach to this entirely? Help, I'm desperate.
