I read this problem in a different way, that fragments of the number had to satisfy the divisibility requirements. For example, take a ten digit number like 9654873120, where each digit is only used once. Note that 0 is divisible by one, and 20 is divisible by two. 120 is divisible by three, and 3120 is divisible by four. 73120 is divisible by 5, 873120 is divisible by six, 4873120 is divisible by seven, etc.
It was easy to show from the constraints that the rightmost digit had to be zero, that the next digit had to be even, and even that the leftmost digit had to be a nine. Beyond that, there seemed like a lot of variation was possible, since the criteria mainly affected the least significant digits. For example, the four digit fragment being divisible by 4 only affected the rightmost two digits, and the eight digit fragment being divisible by eight only affects the rightmost three digits, etc. So it seemed time for a little program to see if there were any solutions of the problem stated this way.
For a ten digit sequence, I was a bit surprised to find there were 202 possible answers. I has expected either many more or much fewer. That would have been more aesthetic, but the universe seems to enjoy disregarding my notions of how it should behave. Good thing too, I suppose.I just modified the program to check the problem as it seems to have been commonly interpreted, that the sum of the rightmost digits must be divisible by the number of digits, and for that there are no solutions.