A one-dimensional Gaussian Wave Packet

Anden
Messages
75
Reaction score
0

Homework Statement


I have been given the function
<br /> \varphi_{G}(z,t) = \frac{2}{\Delta k_0\sqrt{\pi}} \int_{-\infty}^{\infty}dk\ e^{-\frac{4(k-k_0)^2}{\Delta k_0^2}}e^{i(kz-\omega t)}<br />
and been told to do the integration and then to specify the phase and group velocity of the wave package. I also have to decide if there is dispersion or not.

Homework Equations


<br /> \omega = ck <br />
<br /> \int_{-\infty}^{\infty}dx e^{-ax^2} = \sqrt{\frac{\pi}{a}},\quad a &gt; 0<br />

The Attempt at a Solution


Using the method of completing the square I get
<br /> \begin{align*}<br /> \varphi_{G}(z,t) <br /> &amp;= \frac{2}{\Delta k_0\sqrt{\pi}} \int_{-\infty}^{\infty}dk\ \exp{\left(-\frac{4(k-k_{0})^2}{\Delta k_{0}^{2}} + i(kz - kct)\right)} \\<br /> &amp;= \frac{2}{\Delta k_0\sqrt{\pi}} \int_{-\infty}^{\infty}dk\ \exp{\left(-\frac{4}{\Delta k_{0}^{2}}(k^2 - 2k(k_0 + i\frac{\Delta k_{0}^{2}}{8}(z-ct)) + k_{0}^{2})\right)} \\<br /> &amp;= \frac{2}{\Delta k_0\sqrt{\pi}} \int_{-\infty}^{\infty}dk\ \exp{\left(-\frac{4}{\Delta k_0^2}( (k-(k_0 + i\frac{\Delta k_0^2}{8}(z-ct)))^2 - 2k_0 i\frac{\Delta k_0^2}{8}(z-ct) + \frac{\Delta k_0^4}{64}(z-ct)^2)\right)} \\<br /> &amp;= \frac{2}{\Delta k_0\sqrt{\pi}} \exp{\left(ik_0(z-ct) - \frac{\Delta k_0}{16}(z-ct)^2\right)} \int_{-\infty}^{\infty}dk\ \exp{\left(-\frac{4}{\Delta k_0^2}(k-(k_0 + i\frac{\Delta k_0^2}{8}(z-ct)))^2\right)} \\<br /> &amp;= \frac{2}{\Delta k_0\sqrt{\pi}} \exp{\left(ik_0(z-ct) - \frac{\Delta k_0}{16}(z-ct)^2\right)} \frac{\sqrt{\pi}\Delta k_0}{2} \\<br /> &amp;= \exp{\left(-\frac{\Delta k_0^2}{16}(z-ct)^2 + ik_0 (z-ct)\right)}<br /> \end{align*}<br />

Now, I don't really have a lot of experience doing things like this (in fact this is the first time). Is the result I got correct or have I done an error somewhere? Also, is there maybe an easier way to calculate the integral?
 
Physics news on Phys.org
Finally, I would be grateful if someone could help me with the other parts of the problem, i.e. determining the phase and group velocity, and deciding if there is dispersion or not.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top