What is the smallest distance of y = cos(x) + 1 to the origin using IVT and RT?

  • Thread starter Thread starter sahen
  • Start date Start date
sahen
Messages
7
Reaction score
0
Using IVT and RT, work out an estimate for the smallest distance of the curve y = cos(x) + 1 to the origin

i know intermediate value and rolle's theorem , but i don't know how to tackle this problem do you have any idea ?
 
Physics news on Phys.org
Try using the Pythagorean theorem and treat this like an optimization problem.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top