A problem in Hoffman's Linear Algebra

tghg
Messages
12
Reaction score
0
A problem in Hoffman's Linear Algebra.
Page 243

18. If T is a diagonalizable linear operator, then every T-invariant subspace has a complementary T-invariant subspace. And vice versa.

In fact, the answer lies on Pages 263~265,but I try not to use the conception T-admissible to prove this proposition.
Could someone help me out?
 
Last edited:
Physics news on Phys.org
There are a couple of different ways to do that:

The fact that T is "diagonalizable" means that there exist a basis for the vector space consisting entirely of eigenvectors of T (so that the matrix for T in that basis is diagonal). Using that, clearly any T-invariant subspace is spanned by some subset of those eigenvectors and it's orthogonal complement is spanned by the remaining eigenvectors- and so is T-invariant itself.

Or you could use the fact that, since T is diagonalizable, it is "self adjoint": for any vector u,v <Tu, v>= <u, Tv> where <u, v> is the inner product of u and v. That should make it easy to show that if a subspaced is T-invariant, then so is its orthogonal complement.
 
How about the Inversion of the proposition?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top