Dale
Mentor
- 36,582
- 15,376
It is the actual path that the object travels. It is a vector, so no, it is not ##\Delta \theta##. It is the vector ##\Delta \vec r## which can be written as ##\Delta \vec r = \Delta x \hat x + \Delta y \hat y = (\Delta x, \Delta y)## in Cartesian coordinates or as ##\Delta \vec r = \Delta r \hat r + \Delta \theta \hat \theta = (\Delta r, \Delta \theta)## in polar coordinates. So in polar coordinates you can write it ##(0,\Delta \theta)## and as ##\Delta t \to 0## we get ##(0,\Delta \theta/\Delta t) \to (0,d\theta/dt)=(0,v_{\theta}) ## which is always perpendicular to the force ##(F_B,0)## and therefore the work is always 0.Adesh said:What is actual displacement? That \Delta \theta ?