yuiop said:
This is not what would be observed on board the rocket(s) because the time (t) here is the simultaneous coordinate time in the launch frame and the notion of what is simultaneous is different on board the rocket(s). This is the crux of the matter that I shall come back to.
After doing the calculations I am now sure that is what would be observed as coordinate velocity increases relative to any given MCIRF, as measured relative to the simultaneous coordinate time in that given MCIRF. As above, it is the notion of simultaneity that is important and this changes with reference frames and you have not been careful to specify one.
Only one. The launch frame.
yuiop said:
Nothing. Velocity time dilation still occurs, but the effect cancels out. Consider two signals emitted simultaneously from the front and back of a rocket at coordinate time t=0 as measured in a given MCIRF. To give this MCIRF a label I will call it the launch frame (LF), but there is nothing special about this MCIRF and I could do an identical analysis in any other MCIRF. When the signal from the front arrives at the back let us say the velocity in the LF is vb and when the signal from the back arrives at the front, the velocity in the LF is vf. It turns out that with Born rigid acceleration, vb = vf.
i am not sure if this actually tracks. If the signals are simultaneous in the emission MCIRF it appears unlikely the reception ,in a frame which would be many frames and spatial distance removed, would be simultaneous. I will have to work on this.
yuiop said:
This means that sqrt(1-(vb)^2) = sqrt(1-(vf)^2) so at the time of the reception of the signals the velocities and velocity based time dilation is identical at back and front and so there is no differential time dialtion between back and front due to velocity time dilation. All the apparent differential time dilation observed on board the rocket is due to classical Doppler shift according to the observer in the inertial LF.
even if your assumption is correct and the reception is simultaneous wrt the MCIRF how does this imply no velocity dilation?? by definition there is no motion relative to the MCIRF's
so any calculation based on the MCIRF couldn't reveal relative velocity between front and back.
When you say here the observer in the LF do you mean the initial launch frame or the current mCIRF ,,,,earlier you were referring to MCIrfs as LF
In any case Doppler shift is as you say ,apparent dilation, so not really relevant
yuiop said:
Well now we are back to the crux of the problem. I have been putting this off because while I feel I understand it intuitively in my head, putting it into words is not so easy :) The first fdifficulty is how to define a notion of simultaneity for the observers on board the rocket, when there own reference clocks appear to be running at different rates in different locations on board the rocket. If we ask the observers at the front and back of the rocket to send signals simultaneously in there own reference frame, how are they going to arrange that? One way to do this would be to agree a convention that defines "simultaneous" events at the front and back of the rocket as being events that are both simultaneous in a shared MCIRF. If they do this they will observe that the signals are received at the back and front "simultaneously" because the reception events will be simultaneous in a shared MCIRF, (but this shared MCIRF will not be the same shared MCIRF that the signals were emitted simultaneously in). For a practical example, let's say we an inertial rocket ir1 moving at 0.6c and another ir2 moving at 0.8c both relative to the LF. After launch we tell the observers at the front and back to send a signal at the moment they are at rest with ir1, then for a suitable length accelerating rocket, they will both receive signals when they are momentarily at rest with ir2. You might argue that I have cheated here, because I have simply defined, rather than derived a notion of simultaneous for the accelerating rocket observers
I think you misunderstood my question. I am aware of the problems implementing simultaneity in this circumstance , i mentioned a few earlier.
the question was why take an approach which had these problems and the inherent ambiguity of the result due to these problems.??
yuiop said:
Another approach is to speed up the rear clock (as mentioned in an earlier post) so that it appears to be running at the same rate as the front clock. Now we have an unequivocal method of defining simultaneous in the accelerating rocket reference frame and can synchronise clocks using the usual Einstein clock synchronisation convention. Now when we send signals from the front and back using the on board rocket reference clocks, the signals arrive simultaneously at the back and front respectively according to the rocket clocks and the elapsed time between sending and receiving is equal according to both the front and back accelerating rocket observers.
well I have to disagree here. Simply scaling the clocks does not make it an inertial frame.
It is still an accelerating system.
Even disregarding the acceleration/velocity differential, a synchronization which works for one velocity cannot work for other different velocities. Yeah?? How could it?
yuiop said:
If they consider themselves to be stationary in their own reference frame they would ascribe this differential clock rate to a gravitational field and this coincides with the proper acceleration they can feel and and measure. The observers in a given inertial reference frame outside the rocket would ascribe the differential clock rates observed by the rocket observers to classical Doppler shift.
yuiop said:
The snag is that the by calculating the relative time dilation by using the relative velocities at the front and back of the rocket one comes to the conclusion that the relative rates of clocks on board the rocket as measured by observers on board the rocket increases over time which is simply not true. The relative rates of clocks on board the rocket as measured by observers on board the rocket is constant over time.
I think you have misunderstood both my approach and point.
regarding measurement of relative clock rates at the front and back from the launch frame. LF accelerating system AF
Simultaneity is not an issue. measurement of clock rates of course requires some interval of time a single event doesn't work.
so in LF at (bx
o,t
0) (fx
0 ,t
0) we get
observations bT'
0 and fT'
0 of AF ..
at some later point at (bx
1, t
1), (fx
1,t
1)
we get observations bT'
1 and fT'
1 of AF
(bx) t
1 - (bx)t
0 = (bx)dt
(fx)t
1 -(fx)t
0 = (fx)dt
bT
1-bT
0 =dbT'
fT
1 - fT
0= dfT
then (fx)dt/\gamma =dfT' and (bx)dt/\gamma=dbT' or not
Would you agree that in this circumstance the simultaneity of the LF clocks at either measurement is not important because there is no direct comparison between the observations between them?
The comparison is between an observation of the back clock with a later observation of the back clock.Etc.
Of course it would be necessary to calculate the proper times for these events using the Rindler coordinates to make these comparisons.
Also the measurement points could be widely separated say 0.7c and 0.8c
More and more i suspect that the velocity dilation would be insignificant and might possibly agree with the Rindler predictions. I.e. would not increase with greater velocities. The acceleration magnitudes you used were totally unrealistic. The back of the rocket quickly passing the front and leaving it in the dust ;-) so I am still unsure.
thanks