StephenD420
- 97
- 0
Solve <cos(n*pi*x/L)> = integral from negative infinity to positive infinity of x*cos^2(n*pi*x/L)dx
if we use integration by parts with u=x du=dx and dv=cos(2*n*pi*x/L) and v=(L/2*pi*n)*sin(2*pi*n*x/L)
gives
L/((2*pi*n)^2)x*sin(2*pi*n*x/L) + (L/2*pi*n)^2*cos(2*pi*n*x/L) + 1/4*x^2
but now how do I solve this from negative infinity to positive infinity??
Thanks.
Stephen
if we use integration by parts with u=x du=dx and dv=cos(2*n*pi*x/L) and v=(L/2*pi*n)*sin(2*pi*n*x/L)
gives
L/((2*pi*n)^2)x*sin(2*pi*n*x/L) + (L/2*pi*n)^2*cos(2*pi*n*x/L) + 1/4*x^2
but now how do I solve this from negative infinity to positive infinity??
Thanks.
Stephen