I A real matrix and its inverse share the same eigenvectors?

Happiness
Messages
686
Reaction score
30
Suppose ##v_i## is an eigenvector of ##A## with eigenvalue ##\lambda_i## and multiplicity ##1##.

##AA^{-1}v_i=A^{-1}Av_i=A^{-1}\lambda_iv_i=\lambda_iA^{-1}v_i##

Thus ##A^{-1}v_i## is also an eigenvector of ##A## with the same eigenvalue ##\lambda_i##.

Since the multiplicity of ##\lambda_i## is ##1##,

##A^{-1}v_i=k_iv_i##, where ##k_i## is a constant.

Thus ##v_i## is also an eigenvector of ##A^{-1}## with the same eigenvalue ##\lambda_i##.

What's wrong with this proof?

Counterexample:

##A=\begin{pmatrix}\frac{\sqrt3}{2}&\frac{1}{2}&0\\-\frac{1}{2}&\frac{\sqrt3}{2}&0\\0&0&1\end{pmatrix}##

The eigenvector corresponding to eigenvalue ##\frac{\sqrt3}{2}+\frac{1}{2}i## is ##\begin{pmatrix}-\frac{\sqrt2}{2}i\\ \frac{\sqrt2}{2}\\0\end{pmatrix}##, but that for ##A^{-1}## is ##\begin{pmatrix}\frac{\sqrt2}{2}\\-\frac{\sqrt2}{2}i\\0\end{pmatrix}##.
 
Last edited:
Physics news on Phys.org
Happiness said:
Thus ##v_i## is also an eigenvector of ##A^{-1}## with the same eigenvalue ##\lambda_1##.
If ##A v= \lambda v##, then ##A^{-1} v= \frac{1}{\lambda} v##.

(Of course assuming here that ##A^{-1}## exists.)
 
  • Like
Likes Happiness
Samy_A said:
If ##A v= \lambda v##, then ##A^{-1} v= \frac{1}{\lambda} v##.

(Of course assuming here that ##A^{-1}## exists.)

Thanks! I've found the mistake.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top