A "spiral" in the Complex plane

Click For Summary

Homework Help Overview

The discussion revolves around the convergence of a series in the complex plane, specifically focusing on a "spiral" that converges to a complex number. Participants are examining the real and imaginary components of the series and exploring their respective summations.

Discussion Character

  • Exploratory, Mathematical reasoning

Approaches and Questions Raised

  • Participants are attempting to compute the real and imaginary parts of the series separately. Questions are raised regarding the evaluation of specific infinite series, particularly those resembling the Taylor series for cosine and sine functions.

Discussion Status

Some participants have suggested connections to known series expansions for trigonometric functions, indicating a potential direction for further exploration. However, there is no explicit consensus on the methods to be used or the final evaluations of the series.

Contextual Notes

There appears to be a focus on the convergence of the series and the implications of using specific values for x. The discussion includes references to factorial terms and alternating series, which may influence the participants' approaches.

Hill
Messages
812
Reaction score
627
Homework Statement
Starting from the origin, go one unit east, then the same length north, then (1/2) of the previous length west, then (1/3) of the previous length south, then (1/4) of the previous length east, and so on. What point does this “spiral” converge to?
Relevant Equations
series sum
I understand that the "spiral" converges to 1+i-1/2-i/3!+1/4!+i/5!-1/6!-i/7!... .
It splits into two: one for Re, 1-1/2+1/4!-1/6!..., and the other for Im, 1-1/3!+1/5!-1/7!... .
Any hints on how to compute them?
 
Physics news on Phys.org
What are <br /> \displaystyle\sum_{n=0}^\infty \dfrac{(-1)^n x^{2n}}{(2n)!} and \displaystyle\sum_{n=0}^\infty \dfrac{(-1)^n x^{2n+1}}{(2n+1)!} when x = 1?
 
pasmith said:
What are <br /> \displaystyle\sum_{n=0}^\infty \dfrac{(-1)^n x^{2n}}{(2n)!} and \displaystyle\sum_{n=0}^\infty \dfrac{(-1)^n x^{2n+1}}{(2n+1)!} when x = 1?
##\cos## and ##\sin##, of course. Thanks!
 
Or, even better:
$$
\sum_{n=0}^\infty \frac{(ix)^n}{n!}
$$
 
Orodruin said:
Or, even better:
$$
\sum_{n=0}^\infty \frac{(ix)^n}{n!}
$$
Yes. Straight.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K