A very simple cyclic group problem

  • Thread starter Thread starter radou
  • Start date Start date
  • Tags Tags
    Cyclic Group
radou
Homework Helper
Messages
3,148
Reaction score
8

Homework Statement



As the title suggests - this is very simple, I only want to check.

Let G be a cyclic group of order n. Then, for every integer k which divides n, there are elements in G of order k.

The Attempt at a Solution



Now, G = <a>, and a^n = e by definition. Let k be an integer which divides n, so we have n = kp, for some integer p. Then a^n = a^(kp) = (a^p)^k = e. Now, the only thing we need to check in order to prove that the order of a^p is k is that k must be the least positive integer such that the equality is satisfied (this is what I'm a bit unsure about, but I believe it's correct - I used this reasoning in another few problems). Assume there is an integer q < k such that (a^p)^q = e. But then we have a^(pq) = e, and pq is clearly less than kp = n, contradicting the fact that the order of a is n (i.e. that the order of G is n). Hence, a^p is an element of G of order k.
 
Physics news on Phys.org
Completely correct!
 
OK, thanks!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top