A'A and A have the same null space

  • Thread starter Thread starter aanabtawi
  • Start date Start date
  • Tags Tags
    Null space Space
aanabtawi
Messages
3
Reaction score
0
I'm trying to prove that the null space of A'A is the null space of A, this is what I have so far,

1) A'Ax=0, non trivial solutions are a basis for the null space of A'A

2) x'A'Ax=0

3) (Ax)'Ax=0

4) Since (Ax)'A is a linear combination of the col's of A, we see that the null space of A can be written as a linear combination of the basis for the null space of A'A.

Therefore, they have the same null space.

--> Is this proof valid? I am unsure if argument 4 holds ground, but it seems to make sense to me =P
 
Physics news on Phys.org
Is A' your notation for the transpose of A?
 
It is, sorry for not making that clear!
 
didnt think throguh your 4), but this is what you can do once you get to 3):

Ax= 0 => (Ax)'Ax = (Ax|Ax) = ||Ax||^2 = 0 <=> Ax = 0

where (,|,) denotes the scalar product and ||.|| is the norm induced by the scalar product ( ||u|| = sqrt(u|u) ).
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top