MHB Abelian Groups of Order $2100$: Elements of Order $210$

  • Thread starter Thread starter Megus1
  • Start date Start date
  • Tags Tags
    Elements Groups
Megus1
Messages
4
Reaction score
0
Find all the abelian groups of order $2100.$ For each group, give an example of an element of order $210.$

$2100 = 2^2 \cdot 3 \cdot 5^2 \cdot 7,$ then

$G_1 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb Z_3 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_7 \cong \mathbb Z_{10} \times \mathbb{Z}_{210}$

$G_2 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{5^2} \times \mathbb{Z}_7 \cong \mathbb Z_{2} \times \mathbb{Z}_{1050}$

$G_3 = \mathbb{Z}_{2^2} \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_7 \cong \mathbb Z_{5} \times \mathbb{Z}_{420}$

$G_4 = \mathbb{Z}_{2^2} \times \mathbb{Z}_3 \times \mathbb{Z}_{5^2} \times \mathbb{Z}_7 \cong \mathbb{Z}_{2100}$

How do I find the elements of order 210? I don't get it well, for example for $\mathbb Z_{1050},$ an element of order 210 is $\dfrac{1050}{210}=5,$ but why?
 
Physics news on Phys.org
Megus said:
Find all the abelian groups of order $2100.$ For each group, give an example of an element of order $210.$

$2100 = 2^2 \cdot 3 \cdot 5^2 \cdot 7,$ then

$G_1 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb Z_3 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_7 \cong \mathbb Z_{10} \times \mathbb{Z}_{210}$

$G_2 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{5^2} \times \mathbb{Z}_7 \cong \mathbb Z_{2} \times \mathbb{Z}_{1050}$

$G_3 = \mathbb{Z}_{2^2} \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_7 \cong \mathbb Z_{5} \times \mathbb{Z}_{420}$

$G_4 = \mathbb{Z}_{2^2} \times \mathbb{Z}_3 \times \mathbb{Z}_{5^2} \times \mathbb{Z}_7 \cong \mathbb{Z}_{2100}$

How do I find the elements of order 210? I don't get it well, for example for $\mathbb Z_{1050},$ an element of order 210 is $\dfrac{1050}{210}=5,$ but why?

what is the element "e" order ? it is the least number "n" such theat ne = Identity or if the operation is product e^n = I
when we add 5 to itself 210 we will get 1050 which is equal 0 the identity of $\mathbb Z_{1050},$ . using that we can find an element in
$\mathbb Z_{2} \times \mathbb{Z}_{1050}$
with order 210 which is (0,5)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
7
Views
2K
Replies
9
Views
1K
Replies
9
Views
12K
Replies
14
Views
3K
Replies
6
Views
3K
Back
Top