I've sketched a Loedel (symmetric) space-time diagram for two entangled photons in an attempt to illustrate this time issue arising with entanglement and special relativity.
A red guy moving along his X4'' world line at some relativistic speed (with respect to stationary black reference coordinate) while a blue guy moves in the opposite direction at the same relativistic speed as red. Red measures an UP state of the left moving photon at event A. And a short instant later red measures a DOWN state of the right moving photon at event B.
But the event at B occurs in the blue's instantaneous 3D cross-section of the 4-D universe at t'B, whereas the original event A does not occur for Blue until t'A, much later than event B. So, for the blue guy, event A happened after event B, whereas for the red guy event A was first followed an instant later by event B.
[PLAIN]http://i209.photobucket.com/albums/bb185/BobC_03/Entanglement_SpaceTime.jpg[/QUOTE]
Let's separate two issues here. One issue is a strictly special relativity issue and the other is a QM issue.
First, the SR issue: The sketch above could apply for two arbitrary events, A and B. The situation is well known to folks dabling in special relativity and has been fairly well clarified in some of the earlier posts in this thread. Let's say that, in the above sketch, the two events A and B have nothing to do with QM, particularly entanglement. Thus, whether the A event occurs before the B event or the B event occurs before the A event depends on whose inertial reference system you are using for defining "before" and "after." So, I think at this point we can all pretty much agree on the situation. Different observers will not necessarily agree on which event occurred first. But, we avoid any QM implications for this case since particles are not entangled.
But, now the QM entanglement case: First, we choose which special relativity concept for use in proceeding with our analysis (Einstein-Minkowski or Lorentz). We choose the Einstein-Minkowski for this example. The trouble here is that the QM language doesn't seem suited for this model--particularly if you are picturing a block universe. In this special relativity model the 4-dimensional objects are what they are--they are all there as 4-D objects associated with their worldlines. If event A represents a measurement of an entangled particle in the UP state, then we have the intersection of the worldline of the particle and the worldline of the measurement instrument.
Now comes the problem. The usual QM language for the entangled experiment has a global wave function collapsing, yielding the particle states, UP at A and DOWN at B (but, in our SR model we must deal with the question of "where in the 4-dimensional universe is B?"). QM would use a description that envisions the measurement at A that induces ("causes") a collapse of the wave function. But viewing the entire 4-dimensional world, where in that 4-D world would nature locate the event B? Some will argue that event B does not occur without a measurement, but others insist the particle must pop up somewhere along with the collapse. How would nature come up with a preferred location for event B in all of 4-D space-time? Some suggest that the worldline of the two particles do not initiate until events A and B (there is only the wave function in space-time between the creation event and the collapse events of A and B, and the Einstein-Minkowski model has no way of representing the wave function, i.e., as a physical object--of course you can have a mathematical 4-dimensional wave function).
Some have suggested that the B event would have to be located in the same inertial frame as the instrument performing the measurement at A. Then you still have the basic problem of which event really occurred first (as considered in the strictly SR context and discussed in the previous posts). Others have said that the two entangled particles are associated with worldlines having the fixed UP and DOWN states from the point of the creation of the entangled particles. Others object to this, claiming that the particles do not exist (no worldlines are defined) until a measurement is made and that having particles existing in their states from creation is in complete conflict with the usual understanding and application of wave functions. Some seem to feel that the reality of the particles is actually vested in the wave function.
A straghtforward interpretation in the context of block universe asserts that that fundamental problem is the habit of requiring events to be "caused." Configurations of 4-dimensional worldlines will always manifest a 4-dimensional organization consistent with whatever "measurement events" show up when doing physics. You may develop subjective impressions of a wave collapse resulting in a particle with UP state at A and "causing" a DOWN state particle at B. But, in the 4-dimensional view of the universe there was no causality involved. The 4-dimensional objects are just all there. Any observations of the continuous sequence of instantaneous 3-D worlds performed by any observer will be fully consistent with the static 4-dimensional universe.
Without fully and carefully thinking this through, I would suspect that you would have consistency with SR and entanglement if you do the analysis, using a universal proper time measured from the big bang, The wave function would collapse over the entire universe simultaneously (in the universal time sense) over some 3-D cross-section. Everyone can agree on which 4-dimensional proper time lapse is greater. The proper time lapse from the event at the big bang to event A will be the shorter proper time for all observers, assuming the B event is measured at a later universal proper time (although both particles are created simultaneously with the wave function collapse--unless you prefer to have the 4-D particles with their worldlines there at the start of the experiment). It doesn't matter at all what the local time coordinate values are for various boosted inertial coordinates--it's just irrelevant--the only thing that matters is that there be consistency between SR and entanglement in terms of where the events are located in 4-dimensional space.
So, this is a very interesting topic in physics, one that I've never been able to resolve. I missed homework assignments in grad school due to the distraction of this problem. Someone told me that the Griffiths QM textbook has the best explanation. I'd be interested to hear from anyone who has that text.
[Edit] Text inserted at two or three places from last night and getting up this morning.