Abstract Algebra Proof by induction problem

Isaac Wiebe
Messages
6
Reaction score
0

Homework Statement


Show via induction that the nth root of (a1 * a2 * a3 * ... an) ≤ 1/ (n) * ∑ ai, where i ranges from 1 to n.


Homework Equations


Induction


The Attempt at a Solution



Let Pn be the statement above. It is clear that P1 holds since a1 ≤ a1. Now let us assume that Pn holds for any arbitrary integer k, that is the kth root of (a1 * a2 * a3 * a4 * ... ak) ≤ 1/k * ∑ ai

where i ranges from 1 to k.

I need to show that the (k + 1)th root is ≤ 1/ (k + 1) * ∑ ai, where i ranges from 1 to k + 1. I have had no such luck doing this. Would complete induction be required here?



The source of the problem is from Abstract Algebra, Theory and Applications from T. W. Judson (2013 version).
 
Physics news on Phys.org
Isaac Wiebe said:

Homework Statement


Show via induction that the nth root of (a1 * a2 * a3 * ... an) ≤ 1/ (n) * ∑ ai, where i ranges from 1 to n.


Homework Equations


Induction


The Attempt at a Solution



Let Pn be the statement above. It is clear that P1 holds since a1 ≤ a1. Now let us assume that Pn holds for any arbitrary integer k, that is the kth root of (a1 * a2 * a3 * a4 * ... ak) ≤ 1/k * ∑ ai

where i ranges from 1 to k.

I need to show that the (k + 1)th root is ≤ 1/ (k + 1) * ∑ ai, where i ranges from 1 to k + 1. I have had no such luck doing this. Would complete induction be required here?



The source of the problem is from Abstract Algebra, Theory and Applications from T. W. Judson (2013 version).

Are all the ai supposed to be > 0? If so, try first to look at the simple case of n = 2.
 
Last edited:
All ai ⋲ N, so yes they are. And for n = 2 I eventually receive that √(a1 * a2) ≤ 1/2 (a1 + a2)
Or a1 * a2 ≤ [(a1 + a2)^2] / 4. Not entirely sure why I would want to do multiple base cases, but I think you are on the right track.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top