Addition to a random matrix element

ekkilop
Messages
29
Reaction score
0
Hi all!

I have no application in mind for the following question but it find it curious to think about:

Say that we have a square matrix where the sum of the elements in each row and each column is zero. Clearly such a matrix is singular. Suppose that no row or column of the matrix is the zero vector and that no row or column has just a single non-zero element -1.

If we add +1 to a random element in our matrix, is there a way to estimate the probability that this new matrix will be singular? If not generally (and I hardly believe it is possible in the general case), is there any special case of a matrix in which such an estimate is obtainable? It is of course clear that the probability is zero for a 2x2 matrix, but how about for larger matrices?

Any idea would be interesting to hear. Thank you!
 
Physics news on Phys.org
ekkilop said:
Say that we have a square matrix where the sum of the elements in each row and each column is zero. Clearly such a matrix is singular.
Okay.

and that no row or column has just a single non-zero element -1.
That follows from the sum condition.

If we add +1 to a random element in our matrix, is there a way to estimate the probability that this new matrix will be singular?
If you know the matrix: Sure, just check all cases (or use some better algorithm).
If the matrix is not known, is it distributed randomly in some way?

Singular matrices are a special case (they have 1 degree of freedom less). If there is no special reason why you expect them, the probability is probably 0.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top