Here is the link to my review topics for exam 1.(adsbygoogle = window.adsbygoogle || []).push({});

http://math.uh.edu/~bgb/Courses/Math4377/Math4377-Ex1-Topics.pdf

1.2

Does the solution set to a linear system change under elementary row operations?

The solution set does not change under elementary row operations.

What are independent/free variables? How can we tell there are free variables by looking at the row-reduced echelon form?

I would give an example:

1 0 0 0

0 1 0 0

0 0 0 0

x1=x2=independent, x3=x4=free=linear combination of alpha1 (0 1 0 0) & alpha2 (0 0 0 0)

1.3

How can we rewrite a linear system Ax = b in vector form?

Ax=b

A=

A11 ... A1n

.

.

.

Am1 ... Amn

x=

x1

.

.

.

xn

b=

b1

.

.

.

bm

Can we solve the system if b can be written as a linear combination of the column vectors of A?

Yes, I would just put it in augmented form and apply elementary row reductions. I would find that some columns have no pivot variables, thus the variable in that column is free, which is the consequence of being a linear combination of other columns.

1.4

How do the solutions to an inhomogeneous system relate to the solutions of the corresponding homogeneous one?

Homogeneous systems are equal to zero a1x1+...anxn=0, thus it is linear independent in which the a1=...=an=0 or it contains only the trivial solution, all xn=0.

Inhomogeneous systems are not equal to zero, thus it's solutions will not all be zero.

THANKS!!!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Adv. Linear Algebra: Review Topics Chapter 1

**Physics Forums | Science Articles, Homework Help, Discussion**