All Eigenfunctions can be Represented by a Linear Superposition

kq6up
Messages
366
Reaction score
13

Homework Statement



The time-independent wave function ##\psi (x)## can always be taken to be real (unlike ##\Psi (x,t)##, which is necessarily complex). This doesn't mean that every solution to the time-independent Schödinger equation is real; what it says is that if you've got one that is not, it can always be expressed as a linear combination of solutions (with the same energy) that are. So you might as well stick to ##\psi##'s that are real. Hint: If ##\psi (x)## satisfies Equation 2.5, for a given E, So too does its complex conjugate. and hence also the real linear combinations ##(\psi +\psi^*)## and ##i(\psi - \psi^*)##.


Homework Equations



N/A

The Attempt at a Solution



Does not any two ##\psi##'s of the same energy level form a subspace of the total general function ##\Psi## that covers all of that subspace? That is if you put a real coefficient in front of one, and an imaginary coefficient in front of the other, you have the ability to make a vector that touches *every* point of that subspace. This seems self evident to me, and I don't understand why there needs to any kind of formal proof that involves plugging this into Schrödingers equation.

Agreed, or am I missing something?

Chris
 
Physics news on Phys.org
kq6up said:
Does not any two ##\psi##'s of the same energy level form a subspace of the total general function ##\Psi## that covers all of that subspace?
... well isn;t that most of what you have to prove?

Note: the wavefunctions cannot be just any old functions, they have to be solutons to the schrodinger equation - so what is true for any old functions may not be true for psi's.

Agreed, or am I missing something?
You have been thinking about this problem backwards - of course if you start by defining the eigenfunctons as a subspace of the overall function then the answer is self evident - to do a proof you cannot assume that.
You have to start from the definition of the eigenfunctions and of the general function, and demonstrate that they have this relationship.
 
  • Like
Likes 1 person
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top