I An algebraic manipulation in Schutz's book on GR

  • I
  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Book Gr Manipulation
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
TL;DR Summary
Some algebraic manipulation, which I think there's a misprint in the book.
Please let me know what do you think?
Attached is a pic of the page in the book:
My problem is with equation (11.34) specifically with the term ##\frac{6M^3}{L^2}y## I get ##L^4## instead of ##L^2##.
Here are my calculations (I also checked it with maple's expand command):
$$\frac{E^2-1}{L^2}+\frac{2M^2}{L^4}+\frac{2M}{L^2}y-[y^2+\frac{2yM}{L^2}+\frac{M^2}{L^4}]+$$
$$+2M[y^3+\frac{M^3}{L^6}+3y^2\frac{M}{L^2}+3y\frac{M^2}{L^4}]$$

so if we neglect the term ##2My^3##, we should be getting as I wrote.
I don't see where did I make a mistake?
Can you spot it?

Thanks!
 

Attachments

  • schutz(11.34).png
    schutz(11.34).png
    67.1 KB · Views: 171
Physics news on Phys.org
that's an alge-bruh moment. Yeah I agree, assuming I didn't f*ck it up too...
$$\begin{align*}
\left(\frac{dy}{d\phi}\right)^2 &= \frac{\tilde{E}^2}{\tilde{L}^2} - \left(1-2M\left(y + \frac{M}{\tilde{L}^2}\right)\right)\left(\frac{1}{\tilde{L}^2} + \left(y+\frac{M}{\tilde{L}^2}\right)^2\right) \\ \\
&= \frac{\tilde{E}^2 - 1}{\tilde{L}^2} + \frac{2M}{\tilde{L}^2} \left(y + \frac{M}{\tilde{L}^2}\right) - \left(y^2 + \frac{2My}{\tilde{L}^2} + \frac{M^2}{\tilde{L}^4}\right) + 2M\left(y^3 + \frac{3My^2}{\tilde{L}^2} + \frac{3M^2y}{\tilde{L}^4} + \frac{M^3}{\tilde{L}^6}\right) \\ \\
&= \frac{\tilde{E}^2 + M^2/\tilde{L}^2 - 1}{\tilde{L}^2} + \frac{2M^4}{\tilde{L}^6} + \frac{6M^3 y}{\tilde{L}^4} + \left(\frac{6M^2}{\tilde{L}^2} - 1\right)y^2 + \mathcal{O}\left(y^3\right)
\end{align*}$$
 
Last edited by a moderator:
  • Like
Likes MathematicalPhysicist
It seems he carries this mistake in the definition of ##y_0## on the following page.
 
I have a question to the experts, @vanhees71 @PeterDonis @Dale or others who know about GR.

Does this mistake appear also in the literature outside of Schutz's textbook?
 
MathematicalPhysicist said:
My problem is with equation (11.34) specifically with the term ##\frac{6M^3}{L^2}y## I get ##L^4## instead of ##L^2##.

Just based on looking at units I think you are correct. The units of each term should be inverse length squared. The units of ##y## are inverse length; the units of ##M## and ##L## are both length; so for the units to be right you need ##L^4## in the denominator.
 
  • Like
Likes MathematicalPhysicist and vanhees71
My general impression of Schutz is that it needed a better proof reader.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top