I An algebraic manipulation in Schutz's book on GR

  • I
  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Book Gr Manipulation
Click For Summary
The discussion centers on a potential error in equation (11.34) of Schutz's book on General Relativity, specifically regarding the term involving ##\frac{6M^3}{L^2}y##, which one participant believes should instead have ##L^4## in the denominator. Calculations presented show discrepancies when comparing the expected and derived forms of the equation. Participants agree that the units of each term should align, suggesting that the term's current form may be incorrect. Concerns are raised about the overall proofreading quality of Schutz's work, with inquiries about whether similar errors are present in other literature. The conversation highlights the importance of unit consistency in mathematical formulations in physics.
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
TL;DR
Some algebraic manipulation, which I think there's a misprint in the book.
Please let me know what do you think?
Attached is a pic of the page in the book:
My problem is with equation (11.34) specifically with the term ##\frac{6M^3}{L^2}y## I get ##L^4## instead of ##L^2##.
Here are my calculations (I also checked it with maple's expand command):
$$\frac{E^2-1}{L^2}+\frac{2M^2}{L^4}+\frac{2M}{L^2}y-[y^2+\frac{2yM}{L^2}+\frac{M^2}{L^4}]+$$
$$+2M[y^3+\frac{M^3}{L^6}+3y^2\frac{M}{L^2}+3y\frac{M^2}{L^4}]$$

so if we neglect the term ##2My^3##, we should be getting as I wrote.
I don't see where did I make a mistake?
Can you spot it?

Thanks!
 

Attachments

  • schutz(11.34).png
    schutz(11.34).png
    67.1 KB · Views: 173
Physics news on Phys.org
that's an alge-bruh moment. Yeah I agree, assuming I didn't f*ck it up too...
$$\begin{align*}
\left(\frac{dy}{d\phi}\right)^2 &= \frac{\tilde{E}^2}{\tilde{L}^2} - \left(1-2M\left(y + \frac{M}{\tilde{L}^2}\right)\right)\left(\frac{1}{\tilde{L}^2} + \left(y+\frac{M}{\tilde{L}^2}\right)^2\right) \\ \\
&= \frac{\tilde{E}^2 - 1}{\tilde{L}^2} + \frac{2M}{\tilde{L}^2} \left(y + \frac{M}{\tilde{L}^2}\right) - \left(y^2 + \frac{2My}{\tilde{L}^2} + \frac{M^2}{\tilde{L}^4}\right) + 2M\left(y^3 + \frac{3My^2}{\tilde{L}^2} + \frac{3M^2y}{\tilde{L}^4} + \frac{M^3}{\tilde{L}^6}\right) \\ \\
&= \frac{\tilde{E}^2 + M^2/\tilde{L}^2 - 1}{\tilde{L}^2} + \frac{2M^4}{\tilde{L}^6} + \frac{6M^3 y}{\tilde{L}^4} + \left(\frac{6M^2}{\tilde{L}^2} - 1\right)y^2 + \mathcal{O}\left(y^3\right)
\end{align*}$$
 
Last edited by a moderator:
  • Like
Likes MathematicalPhysicist
It seems he carries this mistake in the definition of ##y_0## on the following page.
 
I have a question to the experts, @vanhees71 @PeterDonis @Dale or others who know about GR.

Does this mistake appear also in the literature outside of Schutz's textbook?
 
MathematicalPhysicist said:
My problem is with equation (11.34) specifically with the term ##\frac{6M^3}{L^2}y## I get ##L^4## instead of ##L^2##.

Just based on looking at units I think you are correct. The units of each term should be inverse length squared. The units of ##y## are inverse length; the units of ##M## and ##L## are both length; so for the units to be right you need ##L^4## in the denominator.
 
  • Like
Likes MathematicalPhysicist and vanhees71
My general impression of Schutz is that it needed a better proof reader.
 
In Birkhoff’s theorem, doesn’t assuming we can use r (defined as circumference divided by ## 2 \pi ## for any given sphere) as a coordinate across the spacetime implicitly assume that the spheres must always be getting bigger in some specific direction? Is there a version of the proof that doesn’t have this limitation? I’m thinking about if we made a similar move on 2-dimensional manifolds that ought to exhibit infinite order rotational symmetry. A cylinder would clearly fit, but if we...