Undergrad An algebraic manipulation in Schutz's book on GR

Click For Summary
The discussion centers on a potential error in equation (11.34) of Schutz's book on General Relativity, specifically regarding the term involving ##\frac{6M^3}{L^2}y##, which one participant believes should instead have ##L^4## in the denominator. Calculations presented show discrepancies when comparing the expected and derived forms of the equation. Participants agree that the units of each term should align, suggesting that the term's current form may be incorrect. Concerns are raised about the overall proofreading quality of Schutz's work, with inquiries about whether similar errors are present in other literature. The conversation highlights the importance of unit consistency in mathematical formulations in physics.
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
TL;DR
Some algebraic manipulation, which I think there's a misprint in the book.
Please let me know what do you think?
Attached is a pic of the page in the book:
My problem is with equation (11.34) specifically with the term ##\frac{6M^3}{L^2}y## I get ##L^4## instead of ##L^2##.
Here are my calculations (I also checked it with maple's expand command):
$$\frac{E^2-1}{L^2}+\frac{2M^2}{L^4}+\frac{2M}{L^2}y-[y^2+\frac{2yM}{L^2}+\frac{M^2}{L^4}]+$$
$$+2M[y^3+\frac{M^3}{L^6}+3y^2\frac{M}{L^2}+3y\frac{M^2}{L^4}]$$

so if we neglect the term ##2My^3##, we should be getting as I wrote.
I don't see where did I make a mistake?
Can you spot it?

Thanks!
 

Attachments

  • schutz(11.34).png
    schutz(11.34).png
    67.1 KB · Views: 180
Physics news on Phys.org
that's an alge-bruh moment. Yeah I agree, assuming I didn't f*ck it up too...
$$\begin{align*}
\left(\frac{dy}{d\phi}\right)^2 &= \frac{\tilde{E}^2}{\tilde{L}^2} - \left(1-2M\left(y + \frac{M}{\tilde{L}^2}\right)\right)\left(\frac{1}{\tilde{L}^2} + \left(y+\frac{M}{\tilde{L}^2}\right)^2\right) \\ \\
&= \frac{\tilde{E}^2 - 1}{\tilde{L}^2} + \frac{2M}{\tilde{L}^2} \left(y + \frac{M}{\tilde{L}^2}\right) - \left(y^2 + \frac{2My}{\tilde{L}^2} + \frac{M^2}{\tilde{L}^4}\right) + 2M\left(y^3 + \frac{3My^2}{\tilde{L}^2} + \frac{3M^2y}{\tilde{L}^4} + \frac{M^3}{\tilde{L}^6}\right) \\ \\
&= \frac{\tilde{E}^2 + M^2/\tilde{L}^2 - 1}{\tilde{L}^2} + \frac{2M^4}{\tilde{L}^6} + \frac{6M^3 y}{\tilde{L}^4} + \left(\frac{6M^2}{\tilde{L}^2} - 1\right)y^2 + \mathcal{O}\left(y^3\right)
\end{align*}$$
 
Last edited by a moderator:
  • Like
Likes MathematicalPhysicist
It seems he carries this mistake in the definition of ##y_0## on the following page.
 
I have a question to the experts, @vanhees71 @PeterDonis @Dale or others who know about GR.

Does this mistake appear also in the literature outside of Schutz's textbook?
 
MathematicalPhysicist said:
My problem is with equation (11.34) specifically with the term ##\frac{6M^3}{L^2}y## I get ##L^4## instead of ##L^2##.

Just based on looking at units I think you are correct. The units of each term should be inverse length squared. The units of ##y## are inverse length; the units of ##M## and ##L## are both length; so for the units to be right you need ##L^4## in the denominator.
 
  • Like
Likes MathematicalPhysicist and vanhees71
My general impression of Schutz is that it needed a better proof reader.
 
MOVING CLOCKS In this section, we show that clocks moving at high speeds run slowly. We construct a clock, called a light clock, using a stick of proper lenght ##L_0##, and two mirrors. The two mirrors face each other, and a pulse of light bounces back and forth betweem them. Each time the light pulse strikes one of the mirrors, say the lower mirror, the clock is said to tick. Between successive ticks the light pulse travels a distance ##2L_0## in the proper reference of frame of the clock...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
0
Views
984
  • · Replies 8 ·
Replies
8
Views
3K
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K