Hummingbird25
- 84
- 0
Hi All,
I have been given this example and am trying to explain.
\int_{0}^{1} {x^2} dx
Solve this integral with respect to the definition of the defined integral.
(1)
Let P_{n} be the partion of the interval [0,1] into n equally sized sub-partions.
Thus must mean that ?
Then P_n = \mathop {\lim }\limits_{n \to \infty } (\sum_{i=1}^{n} f(i/n)) \cdot 1/n
since \triangle x = \frac{1-0}{n} = \frac{1}{n}
2) Write the expression of the uppersum U(P_n)
U(P_n) = [\mathop {\lim }\limits_{n \to +\infty } \frac{1}{n} \cdot (\sum_{i=1}^{n} (\frac{i}{n})^2] = [\mathop {\lim }\limits_{n \to +\infty } \frac{1}{n} \cdot [\frac{1}{n})^2 + (\frac{2}{n})^2 + \cdots + (\frac{n}{n})^2] = \mathop {\lim }\limits_{n \to +\infty } (\frac{1}{n^3} \cdot (1^2 + \cdots + n^2))
Then simplify the expressing using 1^2 + \cdots + n^2 = \frac{n \cdot (n+\frac{1}{2})\cdot(n+1)}{3}
By insterting this into the final express for U(P_n) I get U(P_n) = \mathop {\lim }\limits_{n \to +\infty } (\frac{1}{n^3} \cdot (\frac{n \cdot (n+\frac{1}{2})\cdot(n+1)}{3}) = \frac{1}{3}. That must be the idear about simplifying the expression ;)
3) Write the Lower sum U(P_n) and simply the expression using 1^2 + \cdots + n^2 = \frac{n \cdot (n+\frac{1}{2})\cdot(n+1)}{3}
Isn't that simply
U(P_n) = [\mathop {\lim }\limits_{n \to -\infty } \frac{1}{n} \cdot (\sum_{i=1}^{n} (\frac{i}{n})^2] = \cdots = \mathop {\lim }\limits_{n \to -\infty } (\frac{1}{n^3} \cdot (\frac{n \cdot (n+\frac{1}{2})\cdot(n+1)}{3}) = \frac{1}{3}
?
4)
Find the limit \mathop {\lim }\limits_{n \to \infty} U(\mathcal{P}_n) and \mathop {\lim }\limits_{n \to \infty} L(\mathcal{P}_n)
Since n tends to infinity in both the Lower and Upper Limit then \mathop {\lim }\limits_{n \to \infty} U(\mathcal{P}_n) = \mathop {\lim }\limits_{n \to \infty} L(\mathcal{P}_n)= \frac{1}{3} ??
Finally show that the original integeral exists and write its value.
Assuming from the above that sup(L(\mathcal{P}_n) \leq imf(U(\mathcal{P}_n) the the orginal integral
\int_{0}^{1} {x^2} dx exists and more over the function x^2 is said to be Riemann integral over the interval [0,1]
and its value being written as \int_{0}^{1} {x^2} dx = sup(L(\mathcal{P}_n)) = imf(U(\mathcal{P}_n)) = \frac{1}{3} = \frac{1}{3}
q.e.d.
Yours truely
Hummingbird
I have been given this example and am trying to explain.
\int_{0}^{1} {x^2} dx
Solve this integral with respect to the definition of the defined integral.
Homework Statement
(1)
Let P_{n} be the partion of the interval [0,1] into n equally sized sub-partions.
Thus must mean that ?
The Attempt at a Solution
Then P_n = \mathop {\lim }\limits_{n \to \infty } (\sum_{i=1}^{n} f(i/n)) \cdot 1/n
since \triangle x = \frac{1-0}{n} = \frac{1}{n}
Homework Statement
2) Write the expression of the uppersum U(P_n)
The Attempt at a Solution
U(P_n) = [\mathop {\lim }\limits_{n \to +\infty } \frac{1}{n} \cdot (\sum_{i=1}^{n} (\frac{i}{n})^2] = [\mathop {\lim }\limits_{n \to +\infty } \frac{1}{n} \cdot [\frac{1}{n})^2 + (\frac{2}{n})^2 + \cdots + (\frac{n}{n})^2] = \mathop {\lim }\limits_{n \to +\infty } (\frac{1}{n^3} \cdot (1^2 + \cdots + n^2))
Then simplify the expressing using 1^2 + \cdots + n^2 = \frac{n \cdot (n+\frac{1}{2})\cdot(n+1)}{3}
By insterting this into the final express for U(P_n) I get U(P_n) = \mathop {\lim }\limits_{n \to +\infty } (\frac{1}{n^3} \cdot (\frac{n \cdot (n+\frac{1}{2})\cdot(n+1)}{3}) = \frac{1}{3}. That must be the idear about simplifying the expression ;)
Homework Statement
3) Write the Lower sum U(P_n) and simply the expression using 1^2 + \cdots + n^2 = \frac{n \cdot (n+\frac{1}{2})\cdot(n+1)}{3}
Isn't that simply
The Attempt at a Solution
U(P_n) = [\mathop {\lim }\limits_{n \to -\infty } \frac{1}{n} \cdot (\sum_{i=1}^{n} (\frac{i}{n})^2] = \cdots = \mathop {\lim }\limits_{n \to -\infty } (\frac{1}{n^3} \cdot (\frac{n \cdot (n+\frac{1}{2})\cdot(n+1)}{3}) = \frac{1}{3}
?
Homework Statement
4)
Find the limit \mathop {\lim }\limits_{n \to \infty} U(\mathcal{P}_n) and \mathop {\lim }\limits_{n \to \infty} L(\mathcal{P}_n)
The Attempt at a Solution
Since n tends to infinity in both the Lower and Upper Limit then \mathop {\lim }\limits_{n \to \infty} U(\mathcal{P}_n) = \mathop {\lim }\limits_{n \to \infty} L(\mathcal{P}_n)= \frac{1}{3} ??
Finally show that the original integeral exists and write its value.
Assuming from the above that sup(L(\mathcal{P}_n) \leq imf(U(\mathcal{P}_n) the the orginal integral
\int_{0}^{1} {x^2} dx exists and more over the function x^2 is said to be Riemann integral over the interval [0,1]
and its value being written as \int_{0}^{1} {x^2} dx = sup(L(\mathcal{P}_n)) = imf(U(\mathcal{P}_n)) = \frac{1}{3} = \frac{1}{3}
q.e.d.
Yours truely
Hummingbird
Last edited: