Analysis of a Figure to Calculate Force and Moment

Click For Summary
SUMMARY

The discussion focuses on calculating the tension in a cable supporting a bent bar under a load of 600 N. The tension was determined using static equilibrium equations, yielding a result of approximately 853 N. Key calculations involved the components of tension and their contributions to moments about points A and E, with specific angles and distances factored into the equations. The final tension value was confirmed through multiple approaches, ensuring accuracy in the analysis.

PREREQUISITES
  • Understanding of static equilibrium equations
  • Knowledge of trigonometric functions and their applications in physics
  • Familiarity with vector representation of forces
  • Ability to analyze moments and their effects on structures
NEXT STEPS
  • Study the application of static equilibrium in complex structures
  • Learn about vector decomposition of forces in three dimensions
  • Explore the use of trigonometry in engineering mechanics
  • Investigate the principles of tension and compression in structural analysis
USEFUL FOR

Mechanical engineers, civil engineers, and students studying structural analysis will benefit from this discussion, particularly those focused on tension calculations and static equilibrium in engineering applications.

Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
The bent bar ##ABDE## is supported by spherical plain bearings at ##A## and ##E## and by the cable ##BF##. If a load of ##600\, \textrm{N}## is applied at ##C##, as shown in the figure, determine the tension in the cable.

Solution: ##853\, \textrm{N}##
Relevant Equations
Static equations, trigonometry
Figure:
3DF97C7F-3E23-4BE5-BDCB-9FE898C0EA8F.jpeg


My attempt at a Solution:
ED63095F-1D87-4F06-A9AF-C29236DD1DDC.jpeg

$$\overrightarrow{TFD}=TFD\dfrac{(-0,16\widehat{i}+0,11\widehat{j}-0,08\widehat{k})}{0,21}$$
View from above:
1D023918-2A7F-4EDA-A0EF-7DE8331DC103.jpeg

We calculate ##D##:
$$\sigma =90-\arctan \left( \dfrac{0,07}{0,240}\right)=73,74\, \textrm{º}$$
$$d=0,16\cdot \sin (\sigma)=0,1536\, \textrm{m}$$
##TF_x## does not make moment and ##TF_z## does not make time ##\rightarrow \alpha =16,26\, \textrm{º}##
$$\sum M_{EA}=TF_x\cdot \sin \alpha \cdot d+TF_z\cdot \cos \alpha \cdot d+TF_yd -600\cdot d'$$
$$\rightarrow TFD\dfrac{0,16}{0,21}\sin \alpha d+TFD\dfrac{0,08}{0,21}\cos \alpha d+TFD\dfrac{0,11}{0,21}d=600d'\rightarrow$$
$$\rightarrow TFD=\dfrac{0,21\cdot 600d'}{d}\cdot \left( \dfrac{1}{0,16\sin \alpha +0,08\cos \alpha +0,11}\right)=405,2\, \textrm{N}$$
Could you have a look at this one?
 
Physics news on Phys.org
What do you get for the system if you just apply ## \sum_{x,y,z} F = 0## ##\sum_{A,E} M = 0 ## using the coordinate system already in place?
 
I find ##T \approx 853 \rm{N} ##. You will only actually need 3 equations in the end to answer this question by using a coordinate system offset through the point ##E## to generate the remaining two equations (you already have the third for the tension ##T## in terms of its components).
 
Guillem_dlc said:
##TF_x## does not make moment and ##TF_z## does not make time ##\rightarrow \alpha =16,26\, \textrm{º}##
$$\sum M_{EA}=TF_x\cdot \sin \alpha \cdot d+TF_z\cdot \cos \alpha \cdot d+TF_yd -600\cdot d'$$
You state correctly that the x component of tension has no moment about AE, but you include such a term in the equation. Similarly the z component (but "does not make time"?).
 
Guillem_dlc said:
Homework Statement:: The bent bar ##ABDE## is supported by spherical plain bearings at ##A## and ##E## and by the cable ##BF##. If a load of ##600\, \textrm{N}## is applied at ##C##, as shown in the figure, determine the tension in the cable.

Solution: ##853\, \textrm{N}##
Relevant Equations:: Static equations, trigonometry

Figure:
View attachment 316451

My attempt at a Solution:
View attachment 316452
$$\overrightarrow{TFD}=TFD\dfrac{(-0,16\widehat{i}+0,11\widehat{j}-0,08\widehat{k})}{0,21}$$
View from above:
View attachment 316453
We calculate ##D##:
$$\sigma =90-\arctan \left( \dfrac{0,07}{0,240}\right)=73,74\, \textrm{º}$$
$$d=0,16\cdot \sin (\sigma)=0,1536\, \textrm{m}$$
##TF_x## does not make moment and ##TF_z## does not make time ##\rightarrow \alpha =16,26\, \textrm{º}##
I've ended up doing it this way now and I got it:
$$\sum M_{EA}=TF_yd-600\cdot d'=0\rightarrow TFD\dfrac{0,11}{0,21}d=600d'\rightarrow$$
$$\rightarrow \boxed{TFD=853,13\, \textrm{N}}$$
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K