Analysis of a Figure to Calculate Force and Moment

Click For Summary

Homework Help Overview

The discussion revolves around analyzing a figure to calculate the force and moment in a system involving a bent bar supported by bearings and a cable, with a specific load applied. The subject area includes static equilibrium and trigonometric relationships in mechanics.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants explore various methods to apply static equilibrium equations, questioning the contributions of different force components to moments. There are attempts to derive the tension in the cable using both direct calculations and by setting up equations based on the coordinate system.

Discussion Status

Some participants have provided calculations and results for the tension in the cable, while others have raised questions about the assumptions made regarding the force components and their contributions to moments. There is an ongoing exploration of different approaches without a clear consensus on the best method.

Contextual Notes

Participants are working under the constraints of a homework assignment, which includes specific requirements for determining the tension based on given loads and geometry. There are discussions about the implications of certain assumptions in the setup of the problem.

Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
The bent bar ##ABDE## is supported by spherical plain bearings at ##A## and ##E## and by the cable ##BF##. If a load of ##600\, \textrm{N}## is applied at ##C##, as shown in the figure, determine the tension in the cable.

Solution: ##853\, \textrm{N}##
Relevant Equations
Static equations, trigonometry
Figure:
3DF97C7F-3E23-4BE5-BDCB-9FE898C0EA8F.jpeg


My attempt at a Solution:
ED63095F-1D87-4F06-A9AF-C29236DD1DDC.jpeg

$$\overrightarrow{TFD}=TFD\dfrac{(-0,16\widehat{i}+0,11\widehat{j}-0,08\widehat{k})}{0,21}$$
View from above:
1D023918-2A7F-4EDA-A0EF-7DE8331DC103.jpeg

We calculate ##D##:
$$\sigma =90-\arctan \left( \dfrac{0,07}{0,240}\right)=73,74\, \textrm{º}$$
$$d=0,16\cdot \sin (\sigma)=0,1536\, \textrm{m}$$
##TF_x## does not make moment and ##TF_z## does not make time ##\rightarrow \alpha =16,26\, \textrm{º}##
$$\sum M_{EA}=TF_x\cdot \sin \alpha \cdot d+TF_z\cdot \cos \alpha \cdot d+TF_yd -600\cdot d'$$
$$\rightarrow TFD\dfrac{0,16}{0,21}\sin \alpha d+TFD\dfrac{0,08}{0,21}\cos \alpha d+TFD\dfrac{0,11}{0,21}d=600d'\rightarrow$$
$$\rightarrow TFD=\dfrac{0,21\cdot 600d'}{d}\cdot \left( \dfrac{1}{0,16\sin \alpha +0,08\cos \alpha +0,11}\right)=405,2\, \textrm{N}$$
Could you have a look at this one?
 
Physics news on Phys.org
What do you get for the system if you just apply ## \sum_{x,y,z} F = 0## ##\sum_{A,E} M = 0 ## using the coordinate system already in place?
 
I find ##T \approx 853 \rm{N} ##. You will only actually need 3 equations in the end to answer this question by using a coordinate system offset through the point ##E## to generate the remaining two equations (you already have the third for the tension ##T## in terms of its components).
 
Guillem_dlc said:
##TF_x## does not make moment and ##TF_z## does not make time ##\rightarrow \alpha =16,26\, \textrm{º}##
$$\sum M_{EA}=TF_x\cdot \sin \alpha \cdot d+TF_z\cdot \cos \alpha \cdot d+TF_yd -600\cdot d'$$
You state correctly that the x component of tension has no moment about AE, but you include such a term in the equation. Similarly the z component (but "does not make time"?).
 
Guillem_dlc said:
Homework Statement:: The bent bar ##ABDE## is supported by spherical plain bearings at ##A## and ##E## and by the cable ##BF##. If a load of ##600\, \textrm{N}## is applied at ##C##, as shown in the figure, determine the tension in the cable.

Solution: ##853\, \textrm{N}##
Relevant Equations:: Static equations, trigonometry

Figure:
View attachment 316451

My attempt at a Solution:
View attachment 316452
$$\overrightarrow{TFD}=TFD\dfrac{(-0,16\widehat{i}+0,11\widehat{j}-0,08\widehat{k})}{0,21}$$
View from above:
View attachment 316453
We calculate ##D##:
$$\sigma =90-\arctan \left( \dfrac{0,07}{0,240}\right)=73,74\, \textrm{º}$$
$$d=0,16\cdot \sin (\sigma)=0,1536\, \textrm{m}$$
##TF_x## does not make moment and ##TF_z## does not make time ##\rightarrow \alpha =16,26\, \textrm{º}##
I've ended up doing it this way now and I got it:
$$\sum M_{EA}=TF_yd-600\cdot d'=0\rightarrow TFD\dfrac{0,11}{0,21}d=600d'\rightarrow$$
$$\rightarrow \boxed{TFD=853,13\, \textrm{N}}$$
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K