Angular acceleration of the disk as a function of time

AI Thread Summary
A disk with a radius of 21.0 cm is subjected to a tangential pull that accelerates a ball according to the equation a(t) = At, with A determined to be 0.533 m/s² based on the ball's acceleration of 1.60 m/s² at three seconds. The angular acceleration of the disk is expressed as 2.54 rad/s³ multiplied by time, and it reaches an angular speed of 12.0 rad/s after approximately 3.07 seconds. The participant initially struggled with part d but eventually found the solution. The discussion highlights the application of rotational dynamics principles in solving the problem.
iamwilson
Messages
12
Reaction score
0

Homework Statement


A disk of radius 21.0cm is free to turn about an axle perpendicular to it through its center. It has very thin but strong string wrapped around its rim, and the string is attached to a ball that is pulled tangentially away from the rim of the disk (the figure ). The pull increases in magnitude and produces an acceleration of the ball that obeys the equation a(t)=At, where t is in seconds and A is a constant. The cylinder starts from rest, and at the end of the third second, the ball's acceleration is 1.60m/s^2 .

A) find A
B)Express the angular acceleration of the disk as a function of time.
c)How much time after the disk has begun to turn does it reach an angular speed of 12.0rad/s
Through what angle has the disk turned just as it reaches 12.0rad/s ? (Hint: See Section 2.6 in the textbook.)


Homework Equations



i solved a, b, &c, I'm stuck on part d

The Attempt at a Solution


for A, i got 0.533m/s^2, b)2.54rad/s^3(t), c)3.07s, d)?
for part d, I'm clueless on which formula to use
 
Physics news on Phys.org
NVM, i figured it out
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top