QuarkCharmer
- 1,049
- 3
Homework Statement
f(t) = t^2- \sqrt{t}
Find f'(t)
Homework Equations
Difference Quotient
The Attempt at a Solution
f(t) = t^2-\sqrt{t}
\lim_{h\to0} \frac{(t+h)^2-\sqrt{t+h}-t^2+\sqrt{t}}{h}
\lim_{h\to0} \frac{t^2+2th+h^2-\sqrt{t+h}-t^2+\sqrt{t}}{h}
\lim_{h\to0} \frac{2th+h^2-\sqrt{t+h}+\sqrt{t}}{h}
Here is where I get lost. I am trying to do it this way, but I am open to any suggestions.
\lim_{h\to0} 2t+h + \frac{-\sqrt{t+h}+\sqrt{t}}{h}
\lim_{h\to0} 2t+h + \frac{(-\sqrt{t+h}+\sqrt{t})(-\sqrt{t+h}-\sqrt{t})}{h(-\sqrt{t+h}-\sqrt{t})}
\lim_{h\to0} 2t+h + \frac{-\sqrt{t+h}^2 - \sqrt{t}^2}{h(-\sqrt{t+h}-\sqrt{t})}
\lim_{h\to0} 2t+h + \frac{-t-h-t}{h(-\sqrt{t+h}-\sqrt{t})}
\lim_{h\to0} 2t+h + \frac{-2t-h}{h(-\sqrt{t+h}-\sqrt{t})}
Now what? The more I expand and contract it, the more complicated it becomes with no hopes of getting that h out of the denominator.