Another Laurent Expansion Question

brianhawaiian
Messages
12
Reaction score
0

Homework Statement


Find all possible Laurent expansions centered at 0 for
(z - 1) / (z + 1)

Find the Laurent Expansion centerd at z = -1 that converages at z = 1/2 and determine the largest opens et on which
(z - 1) / (z + 1) converges



Homework Equations





The Attempt at a Solution



(z - 1) / (z + 1) breaks down into [z / (z+1)] - [1 / (z+1)]

For the first one divide out the z to obtain 1 / 1 + (1/z) I think? However not being in the form 1 / 1 - (1/z) would this be the same series but negative? That doens't seem right.

For breaking down -1 / (z + 1) I didn't know how to attack that one.
 
Physics news on Phys.org
Anything?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Replies
12
Views
5K
Replies
2
Views
3K
Replies
1
Views
2K
Replies
1
Views
5K
Replies
4
Views
1K
Replies
10
Views
2K
Back
Top