Another one on Lorentz Invariance

alphaone
Messages
46
Reaction score
0
I recently read an author making the following argument in QFT:
if <m|A^0(t,0)|n>=B then <m|A^mu(t,0)|n>=(B/p^0)*p^mu by Lorentz invariance. Can anybody tell me under which circumstances this holds and how it comes about? I understand that <m|A^mu(t,0)|n> had to transform as a 4-vector but why should it be the momentum 4-vector?
 
Physics news on Phys.org
Who's A^{\mu} ? What does it stand for ?
 
That is part of my question: Does the relation hold for arbitrary operators which form a 4-vector? I think not, but maybe I am wrong. The context in which I saw the argument, A^mu was a conserved current but otherwise arbitrary. Does that help?
 
Ok I think I understand the argument partly now and must admit that the question did not really make sense the way I phrased it earlier. What I should have asked is: Suppose we have <0|A^0(t,0)|p> = B where <0| is the vacuum |p> is an eigenstate of momentum p and A^0(t,0) is the zero component of an operator forming a 4-vector evaluated at x_i=0. Given this does it then follow that <0|A^mu(t,0)|p> = (B/E) * p^mu ? I think it should and I think the argument goes something like this: the LHS only really depends on p^mu and therefore the only 4-vector that can possibly appear on the RHS is the momentum 4-vector p^mu. However this argument is not totally clear to me as A^mu itself appears on the LHS and so why should the RHS not be something proportional to that? Anyway if you can explain this argument to me pleae let me know.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top