Another PDE question Where do I begin?

  • Thread starter Thread starter physmurf
  • Start date Start date
  • Tags Tags
    Pde
physmurf
Messages
26
Reaction score
0

Homework Statement


Consider an electrical cable running along the x-axis which is not well insulated from ground, so that leakage occurs along its entire length. Let V(x,t) and I(x,t) denote the voltage and current at point x in the wire at time t. These functions are related to each other by the system

\frac{\partial V}{\partial x}=-L \ \frac{\partial I}{\partial t}- RI, \ and \ \frac{\partial I}{\partial x}=-C\\\frac{\partial V}{\partial t}-GV

where L is the inductance, R is the resistance, C is the capacitance, and G is the leakage to ground. Show that V and I each satisfy

\frac{\partial^{2}u }{\partial x^{2}}=LC\frac{\partial^{2} u }{\partial t^{2}}+(RC+LG)\frac{\partial u }{\partial t}+RGu

which is called the telegraph equation.

Homework Equations



The Attempt at a Solution


I am not sure of even where to start. Initially I would think a change in variable might do it, but then again, I don't know what change in variable to use. Any suggested course of action?

Thanks.
 
Physics news on Phys.org
Try taking partial derivatives of the equations above.. for instance try taking the partial derivative with respect to x of the first equation and then look at the other equation and see what you might want to take a partial derivative of that so that you can combine the equations.
 
Is it always safe to assume that

\frac{\partial^{2}I}{\partial x \partial t}=\frac{\partial^{2}I}{\partial t \partial x}
 
It is okay as long as the mixed derivatives are continuous.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top