Another Vector question Quick one

  • Thread starter Thread starter prace
  • Start date Start date
  • Tags Tags
    Vector
prace
Messages
99
Reaction score
0
So I am given this:

If l has parametric equations

x = 5-3t
y = -2+t
z = 1+9t

find parametic equations for the line through P(-6,4,-3) that is parallel to l.

So, my question is this: for the two lines to be parallel, they have to have the same direction vector right? In this case, <-3, 1, 9>. So if I were to find the parallel line to l, it would be:

x = -6-3s
y = 4+s
z = -3+9s

Thanks!
 
Physics news on Phys.org
Awesome! Thank you!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top